Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The fertile eunuch syndrome is a cause of hypogonadotropic hypogonadism caused by a luteinizing hormone deficiency. It is characterized by hypogonadism with spermatogenesis. Pasqualini and Bur published the first case of eunuchoidism with preserved spermatogenesis in 1950 in la Revista de la Asociación Médica Argentina.
The hypoandrogenism with spermatogenesis syndrome included: (a) eunuchoidism, (b) testis with normal spermatogenesis and full volume, with mature spermatozoids in a high proportion of seminiferous tubes and undifferentiated and immature Leydig cells (c) full functional compensation through the administration of chorionic gonadotropin hormone, while hCG is administered (d) total urinary gonadotrophins within normal limits (e) this definition implies the normal activity of the pituitary and the absence of congenital malformations in general. In describing five other similar cases in 1953, Mc Cullagh & al coined the term fertile eunuch introducing it in the English literature. Unfortunately, this term is incorrect and should not be employed. Indeed, these patients are not really eunuchs. Moreover, as it will be explained later, they are not usually fertile if not treated.
A first step in the understanding of the physiopathology of Pasqualini syndrome was the absence of Lutheinizing Hormone (LH) in plasma and urine of patients. The second breakthrough was the functional and genetic studies that validated the hypothesis of a functional deficit of LH in these men. Inactivating LH mutations will then also be described in some women. Different groups demonstrated in these cases a LH with varying degrees of immunological activity but biologically inactive in most of the patients, due to one or more inactivating mutations in the LHB gene. Finally, the full comprehension of Pasqualini syndrome allowed to reverse the hypoandrogenic phenotype and to restore fertility in these patients through the use of chorionic gonadotropin and the modern in-vitro fertility techniques
The history should include prior testicular or penile insults (torsion, cryptorchidism, trauma), infections (mumps orchitis, epididymitis), environmental factors, excessive heat, radiation, medications, and drug use (anabolic steroids, alcohol, smoking).
Sexual habits, frequency and timing of intercourse, use of lubricants, and each partner's previous fertility experiences are important.
Loss of libido and headaches or visual disturbances may indicate a pituitary tumor.
The past medical or surgical history may reveal thyroid or liver disease (abnormalities of spermatogenesis), diabetic neuropathy (retrograde ejaculation), radical pelvic or retroperitoneal surgery (absent seminal emission secondary to sympathetic nerve injury), or hernia repair (damage to the vas deferens or testicular blood supply).
A family history may reveal genetic problems.
The diagnosis of infertility begins with a medical history and physical exam by a physician, physician assistant, or nurse practitioner. Typically two separate semen analyses will be required. The provider may order blood tests to look for hormone imbalances, medical conditions, or genetic issues.
Congenital adrenal hyperplasia due to 17α-hydroxylase deficiency is an uncommon form of congenital adrenal hyperplasia resulting from a defect in the gene CYP17A1, which encodes for the enzyme 17α-hydroxylase. It produces decreased synthesis of both cortisol and sex steroids, with resulting increase in mineralocorticoid production. Thus, common symptoms include mild hypocortisolism, ambiguous genitalia in genetic males or failure of the ovaries to function at puberty in genetic females, and hypokalemic hypertension (respectively). However, partial (incomplete) deficiency is notable for having inconsistent symptoms between patients, and affected genetic (XX) females may be wholly asymptomatic except for infertility.
The classic feature of gynecomastia is male breast enlargement with soft, compressible, and mobile subcutaneous chest tissue palpated under the areola of the nipple in contrast to softer fatty tissue. This enlargement may occur on one side or both. Dimpling of the skin and nipple retraction are not typical features of gynecomastia. Milky discharge from the nipple is also not a typical finding, but may be seen in a gynecomastic individual with a prolactin secreting tumor. An increase in the diameter of the areola and asymmetry of chest tissue are other possible signs of gynecomastia.
Males with gynecomastia may appear anxious or stressed due to concerns about the possibility of having breast cancer.
Although production of cortisol is inefficient enough to normalize ACTH, the 50-100-fold elevations of corticosterone have enough weak glucocorticoid activity to prevent glucocorticoid deficiency and adrenal crisis.
Gynecomastia is an endocrine system disorder in which there is a non-cancerous increase in the size of male breast tissue. Psychological distress may occur.
The development of gynecomastia is usually associated with benign pubertal changes. However, 75% of pubertal gynecomastia cases resolve within two years of onset without treatment. In rare cases, gynecomastia has been known to occur in association with certain disease states. The pathologic causes of gynecomastia are diverse and may include Klinefelter syndrome, certain cancers, endocrine disorders, metabolic dysfunction, various medications, or may occur due to a natural decline in testosterone production. Disturbances in the endocrine system that lead to an increase in the ratio of estrogens/androgens are thought to be responsible for the development of gynecomastia. This may occur even if the levels of estrogens and androgens are both appropriate but the ratio is altered. Diagnosis is based on signs and symptoms.
Conservative management of gynecomastia is often appropriate as the condition commonly resolves on its own. Medical treatment of gynecomastia that has persisted beyond two years is often ineffective. Medications such as aromatase inhibitors have been found to be effective in rare cases of gynecomastia from disorders such as aromatase excess syndrome or Peutz–Jeghers syndrome, but surgical removal of the excess tissue is usually required.
Gynecomastia is common. Physiologic gynecomastia develops in up to 70% of adolescent boys. Newborns and adolescent males often experience temporary gynecomastia due to the influence of maternal hormones and hormonal changes during puberty, respectively.
Atrophic vaginitis (also known as vaginal atrophy, vulvovaginal atrophy, or urogenital atrophy) is an inflammation of the vagina (and the outer urinary tract) due to the thinning and shrinking of the tissues, as well as decreased lubrication. These symptoms are due to a lack of the reproductive hormone estrogen.
The most common cause of vaginal atrophy is the decrease in estrogen which happens naturally during perimenopause, and increasingly so in post-menopause. However this condition can occur in other circumstances that result in decreased estrogen such as breastfeeding and the use of medications intended to decrease estrogen too, for example, treat endometriosis.
The symptoms can include vaginal soreness and itching, as well as painful intercourse, and bleeding after sexual intercourse. The shrinkage of the tissues and loss of flexibility can be extreme enough to make intercourse impossible.
Genital symptoms include dryness, itching, burning, soreness, pressure, white discharge, malodorous discharge due to infection, painful sexual intercourse, bleeding after intercourse. In addition, sores and cracks may occur spontaneously. Atrophic vaginitis is one possible cause of postmenopausal bleeding (PMB).
Urinary symptoms include painful urination, blood in the urine, increased frequency of urination, incontinence, and increased likelihood and occurrence of infections.
Trichorrhexis invaginata (also known as "Bamboo hair" ) is a distinctive hair shaft abnormality that may occur sporadically, either in normal hair or with other hair shaft abnormalities, or regularly as a marker for Netherton's syndrome. The primary defect appears to be abnormal keratinization of the hair shaft in the keratogenous zone, allowing for intussusception of the fully keratinized and hard distal shaft into the incompletely keratinized and soft proximal portion of the shaft.
Affected individuals may not have symptoms in some cases. Symptomatic individuals present with symptoms identical to those of patients who are on thiazide diuretics, given that the affected transporter is the exact target of thiazides.
Clinical signs of Gitelman syndrome include a high blood pH in combination with low levels of chloride, potassium, and magnesium in the blood and decreased calcium excretion in the urine. In contrast to people with Gordon's syndrome, those affected by Gitelman's syndrome generally have low or normal blood pressure. Individuals affected by Gitelman's syndrome often complain of severe muscle cramps or weakness, numbness, thirst, waking up at night to urinate, salt cravings, abnormal sensations, chondrocalcinosis, or weakness expressed as extreme fatigue or irritability. More severe symptoms such as seizures, tetany, and paralysis have been reported. Abnormal heart rhythms and a prolonged QT interval can be detected on electrocardiogram and cases of sudden cardiac death have been reported due to low potassium levels. Phenotypic variations observed among patients probably result from differences in their genetic background and may depend on which particular amino acid in the NCCT protein has been mutated.
Infants with the disorder exhibit an inverted smile; they appear to be crying when they are actually smiling, in conjunction with uropathy. They also may be affected by hydronephrosis. Symptoms of this disease can start at very young ages. Many people with this syndrome will die in their teens to early 20s because of the renal failure (uropathy) if not diagnosed and treated. Children with the syndrome have abnormal facial development that cause an inverted smile, nerve connections are however normal. When attempting to smile, the child will appear to cry. Urinary problems arise as a result of a neurogenic bladder. Most patients older than the age of toilet training, present with enuresis, urinary-tract infection, hydronephrosis, and a spectrum of radiological abnormalities typical of obstructive or neurogenic bladders. Radiological abnormalities include things such as: trabeculated bladder, vesicoureteral reflex, external sphincter spasm, pyelonephritis, hyperreflexic bladder, noninhibited detrusor contraction, etc.. Urinary abnormalities might result in renal deterioration and failure. This can be prevented by taking proper measures to restore normal micturition and by taking antibiotics to prevent infections. In some cases, the affected patients become hypertensive and progress to end-stage renal disease, while others become uremic. Additionally, most patients suffer from constipation.
Early detection of this syndrome is possible through the peculiar faces that children present.
In 1937, Touraine and Solente first noted the association between hair-shaft defects (bamboo node) and ichthyosiform erythroderma. Còme first coined the term ichthyosis linearis circumflexa in 1949, although Rille had previously recorded the distinctive features of ichthyosis linearis circumflexa by 1922. In 1958, Netherton described a young girl with generalized scaly dermatitis and fragile nodular hair-shaft deformities, which he termed trichorrhexis nodosa. Later, this was more appropriately renamed as trichorrhexis invaginata (bamboo hair) for a ball-and-socket–type hair-shaft deformity at the suggestion of Wilkinson et al.
In 1974, Mevorah et al. established the clinical relationship between ichthyosis linearis circumflexa and Netherton syndrome, and an atopic diathesis was found to occur in approximately 75% of patients with Netherton syndrome.
Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder causing hypertension (high blood pressure) and hypokalemia (abnormally low levels of potassium). It was found by Dr Maria L. New at Weil Cornell Hospital in New York City. It results from mutations in the "HSD11B2" gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low
This disorder presents similarly to hyperaldosteronism, leading to feedback inhibition of aldosterone. Common symptoms include hypertension, hypokalemia, metabolic alkalosis, and low plasma renin activity.
Symptoms depend on whether the hyperparathyroidism is the result of parathyroid overactivity or secondary.
In primary hyperparathyroidism about 75% of people have no symptoms. The problem is often picked up during blood work for other reasons via a raised calcium. Many other people only have non-specific symptoms. Symptoms directly due to hypercalcemia are relatively rare, being more common in patients with malignant hypercalcemia. If present, common manifestations of hypercalcemia include weakness and fatigue, depression, bone pain, muscle soreness (myalgias), decreased appetite, feelings of nausea and vomiting, constipation, polyuria, polydipsia, cognitive impairment, kidney stones (See Foot Note) and osteoporosis. A history of acquired racquet nails (brachyonychia) may be indicative of bone resorption. Parathyroid adenomas are very rarely detectable on clinical examination. Surgical removal of a parathyroid tumor eliminates the symptoms in most patients.
In secondary hyperparathyroidism the parathyroid gland is behaving normally; clinical problems are due to bone resorption and manifest as bone syndromes such as rickets, osteomalacia and renal osteodystrophy.
Gitelman syndrome is an autosomal recessive kidney disorder characterized by low blood levels of potassium and magnesium, decreased excretion of calcium in the urine, and elevated blood pH. The disorder is caused by genetic mutations resulting in improper function of the thiazide-sensitive sodium-chloride symporter (also known as NCC, NCCT, or TSC) located in the distal convoluted tubule of the kidney. This symporter is a channel responsible for the transport of multiple electrolytes such as sodium, chloride, calcium, magnesium, and potassium.
Gitelman syndrome was formerly considered a subset of Bartter syndrome until the distinct genetic and molecular bases of these disorders were identified. Bartter syndrome is also an autosomal recessive hypokalemic metabolic alkalosis, but it derives from a mutation to the NKCC2 found in the thick ascending limb of the loop of Henle.
Urofacial syndrome ( or hydronephrosis with peculiar facial expression), is an autosomal recessive congenital disorder characterized by inverted facial expressions in association with obstructive disease of the urinary tract. The inverted facial expression presented by children with this syndrome allows for early detection of the syndrome, this inverted smile is easy to see when the child is smiling and laughing. Early detection is vital for establishing a better prognosis as urinary related problems associated with this disease can cause harm if left untreated. Incontinence is another easily detectable symptom of the syndrome that is due to detrusor-sphincter discoordination, although it can easily be mistaken for pyelonephritis.
It may be associated with "HPSE2".
Initially, patients with neonatal or early-childhood onset diabetes are possible candidates for having Wolcott–Rallison syndrome. The other symptoms include the multiple epiphyseal dysplasia, osteopenia, intellectual disability, and hepatic and renal dysfunction. Patients with the symptoms that line up with Wolcott–Rallison syndrome can be suggested for genetics testing. The key way to test for this disease specifically is through genetic testing for the EIKF2AK3 mutation. Molecular genetic analysis can be done for the patient and the parents to test for de novo mutations or inherited. It can also show whether the patient's parents are heterozygotes or homozygotes for the normal phenotype. X-Rays can show bone age in relation to actual age. Typically the bond age is a few years less than the actual in the patients with WRS. Hypothyroidism is rare is WRS patients but can occur.
Syndrome of inappropriate antidiuretic hormone secretion (SIADH) is characterized by excessive unsuppressible release of antidiuretic hormone (ADH) either from the posterior pituitary gland, or an abnormal non-pituitary source. Unsuppressed ADH causes an unrelenting increase in solute-free water being returned by the tubules of the kidney to the venous circulation.
ADH is derived from a preprohormone precursor that is synthesized in cells in the hypothalamus and stored in vesicles in the posterior pituitary. "Appropriate" ADH secretion is regulated by osmoreceptors on the hypothalamic cells that synthesize and store ADH: plasma hypertonicity activates these receptors, ADH is released into the blood stream, the kidney increases solute-free water return to the circulation, and the hypertonicity is alleviated. "Inappropriate" ADH secretion causes a "unrelenting increase" in solute-free water ("free water") absorption by the kidneys, with two consequences. First, in the extracellular fluid (ECF) space, there is a dilution of blood solutes, causing hypoosmolality, including a low sodium concentration - hyponatremia. Then virtually simultaneously, in the intracellular space, cells swell, i.e. intracellular volume increases. Swelling of brain cells causes various neurological abnormalities which in severe or acute cases can result in convulsions, coma, and death.
The causes of SIADH are grouped into six categories: 1) central nervous system diseases that directly stimulate the hypothalamus, the site of control of ADH secretion; 2) various cancers that synthesize and secrete ectopic ADH; 3) various pulmonary diseases; 4) numerous (at least seventeen) drugs that chemically stimulate the hypothalamus; 5) inherited mutations that cause aquaporins always to be "turned on"; and 6) miscellaneous largely transient conditions.
Potential treatments of SIADH include restriction of fluid intake, correction of an identifiable reversible underlying cause, and/or medication which promotes solute-free water excretion by the kidney. The presence of cerebral edema may necessitate intravenous isotonic or hypertonic saline administration.
SIADH was originally described in 1957 in two people with small-cell carcinoma of the lung.
Wolcott–Rallison syndrome, WRS, is a rare, autosomal recessive disorder with infancy-onset diabetes mellitus, multiple epiphyseal dysplasia, osteopenia, mental retardation or developmental delay, and hepatic and renal dysfunction as main clinical findings. Patients with WRS have mutations in the EIF2AK3 gene, which encodes the pancreatic eukaryotic translation initiation factor 2-alpha kinase 3.
In 90% of cases, neonatal Bartter syndrome is seen between 24 and 30 weeks of gestation with excess amniotic fluid (polyhydramnios). After birth, the infant is seen to urinate and drink excessively (polyuria, and polydipsia, respectively). Life-threatening dehydration may result if the infant does not receive adequate fluids. About 85% of infants dispose of excess amounts of calcium in the urine (hypercalciuria) and kidneys (nephrocalcinosis), which may lead to kidney stones. In rare occasions, the infant may progress to renal failure.
Patients with classic Bartter syndrome may have symptoms in the first two years of life, but they are usually diagnosed at school age or later. Like infants with the neonatal subtype, patients with classic Bartter syndrome also have polyuria, polydipsia, and a tendency to dehydration, but normal or just
slightly increased urinary calcium excretion without the tendency to develop kidney stones. These patients also have vomiting and growth retardation. Kidney function is also normal if the disease is treated, but occasionally patients proceed to end-stage kidney failure.
Bartter's syndrome consists of low levels of potassium in the blood, alkalosis, normal to low blood pressures, and elevated plasma renin and aldosterone. Numerous causes of this syndrome probably exist. Diagnostic pointers include high urinary potassium and chloride despite low serum values, increased plasma renin, hyperplasia of the juxtaglomerular apparatus on kidney biopsy, and careful exclusion of diuretic abuse. Excess production of prostaglandins by the kidneys is often found. Magnesium wasting may also occur. Homozygous patients suffer from severe hypercalciuria and nephrocalcinosis.
Signs and symptoms of AIP can be variable. Severe and poorly localized abdominal pain is a very common symptom (found in 95% of those affected by AIP). Urinary signs and symptoms such as painful urination, urinary retention, urinary incontinence, or dark urine have also been known to occur. Psychiatric signs and symptoms of AIP may manifest as anxiety, paranoia, irritability, delusions, hallucinations, confusion, and depression. Signs that suggest increased activity of the sympathetic nervous system may be evident including tachycardia, hypertension, palpitations, orthostatic hypotension, sweating, restlessness, and tremor. Other neurologic signs and symptoms of AIP include seizures, peripheral neuropathy, abnormal sensations, chest pain, leg pain, back pain or headache, and coma. Nausea, vomiting, constipation, and diarrhea can also occur. Proximal muscle weakness typically beginning in the arms is characteristic; there can be muscle pain, tingling, numbness, weakness or paralysis; muscle weakness seen in AIP can progress to include the muscles of breathing causing respiratory failure and can be fatal.
AIP patients have an increased risk of developing hepatocellular carcinoma, melanoma, lymphoma, chronic hypertension, chronic kidney disease, and chronic pain.
BPH is the most common cause of lower urinary tract symptoms (LUTS), which are divided into storage, voiding, and symptoms which occur after urination. Storage symptoms include the need to urinate frequently, waking at night to urinate, urgency (compelling need to void that cannot be deferred), involuntary urination, including involuntary urination at night, or urge incontinence (urine leak following a strong sudden need to urinate). Voiding symptoms include urinary hesitancy (a delay between trying to urinate and the flow actually beginning), intermittency (not continuous), involuntary interruption of voiding, weak urinary stream, straining to void, a sensation of incomplete emptying, and terminal dribbling (uncontrollable leaking after the end of urination, also called post-micturition dribbling). These symptoms may be accompanied by bladder pain or pain while urinating, called dysuria.
Bladder outlet obstruction (BOO) can be caused by BPH. Symptoms are abdominal pain, a continuous feeling of a full bladder, frequent urination, acute urinary retention (inability to urinate), pain during urination (dysuria), problems starting urination (urinary hesitancy), slow urine flow, starting and stopping (urinary intermittency), and nocturia.
BPH can be a progressive disease, especially if left untreated. Incomplete voiding results in residual urine or urinary stasis, which can lead to an increased risk of urinary tract infection.
Symptoms of enolase deficiency include exercise-induced myalgia and generalized muscle weakness and fatigability, both with onset in adulthood. Symptoms also include muscle pain without cramps, and decreased ability to sustain long term exercise.