Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Myotonia ("Myo" from Greek; muscle, and "Tonus" from Latin; tension) is a symptom of a small handful of certain neuromuscular disorders characterized by delayed relaxation (prolonged contraction) of the skeletal muscles after voluntary contraction or electrical stimulation.
Myotonia is present in Myotonia congenita, Paramyotonia Congenita and myotonic dystrophy.
Generally, repeated contraction of the muscle can alleviate the myotonia and relax the muscles thus improving the condition, however this is not the case in Paramyotonia congenita. This phenomenon is known as "Warm-Up" and is not to be confused with warming up before exercise, though they may appear similar. Individuals with the disorder may have trouble releasing their grip on objects or may have difficulty rising from a sitting position and a stiff, awkward gait.
Myotonia can affect all muscle groups; however, the pattern of affected muscles can vary depending on the specific disorder involved.
People suffering from disorders involving myotonia can have a life-threatening reaction to certain anaesthetics; one of these conditions occurs when the patient is under anaesthetic and is termed "Malignant hyperthermia".
The prolonged muscle contractions, which occur most commonly in the leg muscles in recessive mutations, and more commonly in the hands, face, and eyelids in dominant mutations, are often enhanced by inactivity, and in some forms are relieved by repetitive movement known as "the warm-up effect". This effect often diminishes quickly with rest. Some individuals with myotonia congenita are prone to falling as a result of hasty movements or an inability to stabilize themselves after a loss of balance. During a fall, a person with myotonia congenita may experience partial or complete rigid paralysis that will quickly resolve once the event is over. However, a fall into cold water may render the person unable to move for the duration of submergence. As with myotonic goats, children are more prone to falling than adults, due to their impulsivity.
The two major types of myotonia congenita are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease, and causes more severe myotonia, muscle stiffness and transient weakness. Although myotonia in itself is not normally associated with pain, cramps or myalgia may develop. People with Becker disease often experience temporary attacks of muscle weakness, particularly in the arms and hands, brought on by movement after periods of rest. They may also develop mild, permanent muscle weakness over time. This muscle weakness is not observed in people with Thomsen disease. However, in recent times, as more of the individual mutations that cause myotonia congenita are identified, these limited disease classifications are becoming less widely used.
Early symptoms in a child may include:
- Difficulty swallowing
- Gagging
- Stiff movements that improve when they are repeated
- Frequent falling
- Difficulties opening eyelids after strenuous contraction or crying (von Graefe's sign)
Possible complications may include:
- Aspiration pneumonia (caused by swallowing difficulties)
- Frequent choking or gagging in infants (also caused by swallowing difficulties)
- Abdominal muscle weakness
- Chronic joint problems
- Injury due to falls
Many patients report that temperature may affect the severity of symptoms, especially cold as being an aggravating factor. However, there is some scientific debate on this subject, and some even report that cold may alleviate symptoms.
Patients typically complain of muscle stiffness that can continue to focal weakness. This muscle stiffness cannot be walked off, in contrast to myotonia congenita. These symptoms are increased (and sometimes induced) in cold environments. For example, some patients have reported that eating ice cream leads to a stiffening of the throat. For other patients, exercise consistently induces symptoms of myotonia or weakness. Typical presentations of this are during squatting or repetitive fist clenching. Some patients also indicate that specific foods are able to induce symptoms of paramyotonia congenita. Isolated cases have reported that carrots and watermelon are able to induce these symptoms. The canonical definition of this disorder precludes permanent weakness in the definition of this disorder. In practice, however, this has not been strictly adhered to in the literature.
Myotonia may present in the following diseases with different causes related to the ion channels in the skeletal muscle fiber membrane (Sarcolemma).
Paramyotonia congenita (PC), also known as paramyotonia congenita of von Eulenburg or Eulenburg disease, is a rare congenital autosomal dominant neuromuscular disorder characterized by “paradoxical” myotonia. This type of myotonia has been termed paradoxical because it becomes worse with exercise whereas classical myotonia, as seen in myotonia congenita, is alleviated by exercise. PC is also distinguished as it can be induced by cold temperatures. Although more typical of the periodic paralytic disorders, patients with PC may also have potassium-provoked paralysis. PC typically presents within the first decade of life and has 100% penetrance. Patients with this disorder commonly present with myotonia in the face or upper extremities. The lower extremities are generally less affected. While some other related disorders result in muscle atrophy, this is not normally the case with PC. This disease can also present as hyperkalemic periodic paralysis and there is debate as to whether the two disorders are actually distinct.
Although much less publicized, hyperkalemic periodic paralysis has been observed in humans. In humans the disorder causes episodes of extreme muscle weakness, with attacks often beginning in infancy. Depending on the type and severity of the HyperKPP, it can increase or stabilize until the fourth or fifth decade where attacks may cease, decline, or, depending on the type, continue on into old age. Factors that can trigger attacks include rest after exercise, potassium-rich foods, stress, fatigue, weather changes, certain pollutants (e.g., cigarette smoke) and fasting. Muscle strength often improves between attacks, although many affected people may have increasing bouts of muscle weakness as the disorder progresses (abortive attacks). Sometimes with HyperKPP those affected may experience degrees of muscle stiffness and spasms (myotonia) in the affected muscles. This can be caused by the same things that trigger the paralysis, dependent on the type of myotonia.
Some people with hyperkalemic periodic paralysis have increased levels of potassium in their blood (hyperkalemia) during attacks. In other cases, attacks are associated with normal blood potassium levels (normokalemia). Ingesting potassium can trigger attacks in affected individuals, even if blood potassium levels do not rise in response.
In contrast to HyperKPP, hypokalemic periodic paralysis (noted in humans) refers to loss-of-function mutations in channels that prevent muscle depolarisation and therefore are aggravated by low potassium ion concentrations.
This inherited disease is characterized by violent muscle twitching and substantial muscle weakness or paralysis among affected horses. HYPP is a dominant genetic disorder; therefore, heterozygotes bred to genotypically normal horses have a statistic probability of producing clinically affected offspring 50% of the time.
Horses with HYPP can be treated with some possibility of reducing clinical signs, but the degree that medical treatment helps varies from horse to horse. There is no cure. Horses with HYPP often lose muscle control during an attack.
Some horses are more affected by the disease than others and some attacks will be more severe than others, even in the same horse. Symptoms of an HYPP attack may include:
- Muscle trembling
- Prolapse of the third eyelid — this means that the third eyelid flickers across the eye or covers more of the eye than normal
- Generalized weakness
- Weakness in the hind end — the horse may look as though it is 'dog-sitting'
- Complete collapse
- Abnormal whinny — because the muscles of the voicebox are affected as well as other muscles
- Death — in a severe attack the diaphragm is paralyzed and the horse can suffocate
HYPP attacks occur randomly and can strike a horse standing calmly in a stable just as easily as during exercise. Following an HYPP attack, the horse appears normal and is not in any pain which helps to distinguish it from Equine Exertional Rhabdomyolysis (ER), commonly known as "Azoturia," "Monday Morning Sickness" or "tying up." Horses that are tying up usually suffer attacks in connection with exercise and may take anywhere from 12 hours to several days to recover. Muscle tissue is damaged in an attack of ER, and the horse will be in pain during and following an attack. A blood test will reveal elevations in certain muscle enzymes after an episode of ER and so the two diseases, while superficially similar, are easily distinguished from one another in the laboratory.
Unlike with seizures, horses with HYPP are fully conscious and lucid during an attack. Horses may suffocate during an HYPP attack due to paralysis of the respiratory system. Horses that collapse during an episode are clearly distressed as they repeatedly struggle to get to their feet. If this occurs while the horse is being ridden or otherwise handled, the human handler or rider may be at risk of being injured by the movement of the horse.
Mutations in the "SCN4A" gene cause potassium-aggravated myotonia. The "SCN4A" gene provides instructions for making a protein that is critical for the normal function of skeletal muscle cells. For the body to move normally, skeletal muscles contract and relax in a coordinated way. Muscle contractions are triggered by the flow of positively charged ions, including sodium, into skeletal muscle cells. The "SCN4A" protein forms channels that control the flow of sodium ions into these cells. Mutations in the "SCN4A" gene alter the usual structure and function of sodium channels. The altered channels cannot properly regulate ion flow, increasing the movement of sodium ions into skeletal muscle cells. The influx of extra sodium ions triggers prolonged muscle contractions, which are the hallmark of myotonia.
Potassium-aggravated myotonia is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits a mutation in the "SCN4A" gene from one affected parent. Other cases result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
Presentation of symptoms and signs varies considerably by form (DM1/DM2), severity and even unusual DM2 phenotypes. DM1 symptoms for DM2 include problems with executive function (e.g., organization, concentration, word-finding) and hypersomnia. Conduction abnormalities are more common in DM1 than DM2, but all people are advised to have an annual ECG. Both types are also associated with insulin resistance. Myotonic dystrophy may have a cortical cataract with a blue dot appearance, or a posterior subcapsular cataract.
DM2 is generally milder than DM1, with generally fewer DM2 people requiring assistive devices than DM1 people. In addition, the severe congenital form that affects babies in DM1 has not been found in DM2 and the early onset of symptoms is rarely noted to appear in younger people in the medical literature.
Symptoms may appear at any time from infancy to adulthood. DM causes general weakness, usually beginning in the muscles of the hands, feet, neck, or face. It slowly progresses to involve other muscle groups, including the heart. DM affects a wide variety of other organ systems as well.
Channelopathies are diseases caused by disturbed function of ion channel subunits or the proteins that regulate them. These diseases may be either congenital (often resulting from a mutation or mutations in the encoding genes) or acquired (often resulting from autoimmune attack on an ion channel).
There are a large number of distinct dysfunctions known to be caused by ion channel mutations. The genes for the construction of ion channels are highly conserved amongst mammals and one condition, hyperkalemic periodic paralysis, was first identified in the descendants of Impressive, a registered Quarter Horse (see AQHA website).
The channelopathies of human skeletal muscle include hyper- and hypokalemic (high and low potassium blood concentrations) periodic paralysis, myotonia congenita and paramyotonia congenita.
Channelopathies affecting synaptic function are a type of synaptopathy.
There are two main types of myotonic dystrophy. Type 1 (DM1), also known as Steinert disease, has a severe congenital form and a milder childhood-onset form as well as an adult-onset form. This disease is most often in the facial muscles, levator palpebrae superioris, temporalis, sternocleidomastoids, distal muscles of the forearm, hand intrinsic muscles, and ankle dorsiflexors. Type 2 (DM2), also known as proximal myotonic myopathy (PROMM), is rarer and generally manifests with milder signs and symptoms than DM1.
Other forms of myotonic dystrophy not associated with DM1 or DM2 genetic mutations have been described. One case which was proposed as a candidate for the "DM3" label, was later characterized as an unusual form of inclusion body myopathy associated with Paget's disease and frontotemporal dementia.
The types in the following table are commonly accepted. Channelopathies currently under research, like Kir4.1 potassium channel in multiple sclerosis, are not included.
Muscular dystrophy (MD) is a group of muscle diseases that results in increasing weakening and breakdown of skeletal muscles over time. The disorders differ in which muscles are primarily affected, the degree of weakness, how fast they worsen, and when symptoms begin. Many people will eventually become unable to walk. Some types are also associated with problems in other organs.
There are nine main categories of muscular dystrophy that contain more than thirty specific types. The most common type is Duchenne muscular dystrophy (DMD) which typically affects males beginning around the age of four. Other types include Becker muscular dystrophy, facioscapulohumeral muscular dystrophy, and myotonic dystrophy. They are due to mutations in genes that are involved in making muscle proteins. This can occur due to either inheriting the defect from one's parents or the mutation occurring during early development. Disorders may be X-linked recessive, autosomal recessive, or autosomal dominant. Diagnosis often involves blood tests and genetic testing.
There is no cure for muscular dystrophy. Physical therapy, braces, and corrective surgery may help with some symptoms. Assisted ventilation may be required in those with weakness of breathing muscles. Medications used include steroids to slow muscle degeneration, anticonvulsants to control seizures and some muscle activity, and immunosuppressants to delay damage to dying muscle cells. Outcomes depend on the specific type of disorder.
Duchenne muscular dystrophy, which represents about half of all cases of muscular dystrophy, affects about one in 5,000 males at birth. Muscular dystrophy was first described in the 1830s by Charles Bell. The word "dystrophy" is from the Greek "dys", meaning "difficult" and "troph" meaning "nourish". Gene therapy, as a treatment, is in the early stages of study in humans.
The diagnosis of muscular dystrophy is based on the results of muscle biopsy, increased creatine phosphokinase (CpK3), electromyography, and genetic testing. A physical examination and the patient's medical history will help the doctor determine the type of muscular dystrophy. Specific muscle groups are affected by different types of muscular dystrophy.
Other tests that can be done are chest X-ray, echocardiogram, CT scan, and magnetic resonance image scan, which via a magnetic field can produce images whose detail helps diagnose muscular dystrophy.
NMT is a diverse disorder. As a result of muscular hyperactivity, patients may present with muscle cramps, stiffness, myotonia-like symptoms (slow relaxation), associated walking difficulties, hyperhidrosis (excessive sweating), myokymia (quivering of a muscle), fasciculations (muscle twitching), fatigue, exercise intolerance, myoclonic jerks and other related symptoms. The symptoms (especially the stiffness and fasciculations) are most prominent in the calves, legs, trunk, and sometimes the face and neck, but can also affect other body parts. NMT symptoms may fluctuate in severity and frequency. Symptoms range from mere inconvenience to debilitating. At least a third of people also experience sensory symptoms.
An attack often begins with muscle pain, cramping, and stiffness. This is followed by weakness or paralysis that tends to develop rapidly, usually in late evening or the early hours of the morning. The weakness is usually symmetrical; the limb muscles closer to the trunk (proximal) are predominantly affected, and weakness tends to start in the legs and spread to the arms. Muscles of the mouth and throat, eyes, and breathing are usually not affected, but occasionally weakness of the respiratory muscles can cause life-threatening respiratory failure. Attacks typically resolve within several hours to several days, even in the absence of treatment. On neurological examination during an attack, flaccid weakness of the limbs is noted; reflexes are usually diminished, but the sensory system is unaffected. Mental status is not affected.
Attacks may be brought on by physical exertion, drinking alcohol, or eating food high in carbohydrates or salt. This may explain why attacks are more common in summer, when more people drink sugary drinks and engage in exercise. Exercise-related attacks tend to occur during a period of rest immediately after exercise; exercise may therefore be recommended to abort an attack.
There may be symptoms of thyroid overactivity, such as weight loss, a fast heart rate, tremor, and perspiration; but such symptoms occur in only half of all cases. The most common type of hyperthyroidism, Graves' disease, may additionally cause eye problems (Graves' ophthalmopathy) and skin changes of the legs (pretibial myxedema). Thyroid disease may also cause muscle weakness in the form of thyrotoxic myopathy, but this is constant rather than episodic.
Ataxia can develop very abruptly or it can develop over time. Some signs and symptoms of ataxia are loss of balance, loss of muscle coordination in an arm, hand, or leg, difficulty walking, slur of speech, or difficulty swallowing. Ataxia is a non-specific condition characterized by a lack of voluntary movements to some degree. Rather than involving damage to the cerebellum, ataxia in EAST syndrome is due to the KCNJ10 mutation. In the brain, KCNJ10 is expressed in glial cells surrounding synapses and blood vessels as a K+ ion buffer. K+ is necessary to maintain a neuronal cell's membrane potential, and these glial cells are responsible for transferring K+ ions from sites of excess K+ to sites with deficient K+. KCNJ10 is a major potassium channel in these glial cells, and when this gene is mutated, these glial cells cannot properly clear K+ from the extracellular space and deliver K+ ions to places that need it. Excess K+ in these areas of synapse disturbs physiological excitability, resulting in symptoms of ataxia.
The treatment of ataxia depends on the cause, and there is not current research for EAST syndrome specific treatment; however, there are some general ways to improve disability from ataxia. The movement disorders associated with ataxia can be managed by pharmacological treatments and through physical therapy and occupational therapy to reduce disability. Physical therapy treatment is highly dependent on each individual and varies. A recent review states that physical therapy is effective, however, there is only moderate evidence to support this.
There are three main types of NMT:
- Chronic
- Monophasic (symptoms that resolve within several years of onset; postinfection, postallergic)
- Relapsing Remitting
Hypokalemia (low blood potassium levels) commonly occurs during attacks; levels below 3.0 mmol/l are typically encountered. Magnesium and phosphate levels are often found to be decreased. Creatine kinase levels are elevated in two thirds of cases, usually due to a degree of muscle injury; severe elevations suggestive of rhabdomyolysis (muscle tissue destruction) are rare. Electrocardiography (ECG/EKG) may show tachycardia (a fast heart rate) due to the thyroid disease, abnormalities due to cardiac arrhythmia (atrial fibrillation, ventricular tachycardia), and conduction changes associated with hypokalemia (U waves, QRS widening, QT prolongation, and T wave flattening). Electromyography shows changes similar to those encountered in myopathies (muscle diseases), with a reduced amplitude of the compound muscle action potentials (CMAPs); they resolve when treatment has commenced.
TPP is distinguished from other forms of periodic paralysis (especially hypokalemic periodic paralysis) with thyroid function tests on the blood. These are normal in the other forms, and in thyrotoxicosis the levels of thyroxine and triiodothyronine are elevated, with resultant suppression of TSH production by the pituitary gland. Various other investigations are usually performed to separate the different causes of hyperthyroidism.
EAST syndrome is a syndrome consisting of epilepsy, ataxia (a movement disorder), sensorineural deafness (deafness because of problems with the hearing nerve) and salt-wasting renal tubulopathy (salt loss caused by kidney problems). The tubulopathy (renal tubule abnormalities) in this condition predispose to hypokalemic (low potassium) metabolic alkalosis with normal blood pressure. Hypomagnesemia (low blood levels of magnesium) may also be present.
EAST syndrome is also called SeSAME syndrome, as a syndrome of seizures, sensorineural deafness, ataxia, intellectual disability (mental retardation), and electrolyte imbalances. It is an autosomal recessive genetic disorder caused by mutations in the KCNJ10 gene, as discovered by Bockenhauer and co-workers. The KCNJ10 gene encodes the K+ channel Kir.4 (allowing K+ to flow into a cell rather than out) and is present in the brain, ear, and kidney.
Pathologic atrophy of muscles can occur with diseases of the motor nerves, or diseases of the muscle tissue itself. Examples of atrophying nerve diseases include Charcot-Marie-Tooth disease, poliomyelitis, amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease), and Guillain–Barré syndrome. Examples of atrophying muscle diseases include muscular dystrophy, myotonia congenita, and myotonic dystrophy.
Changes in Na+ channel isoform expression and spontaneous activity in muscle called fibrillation can also result in muscle atrophy.
"Disuse atrophy" of muscles and bones, with loss of mass and strength, can occur after prolonged immobility, such as extended bedrest, or having a body part in a cast (living in darkness for the eye, bedridden for the legs etc.). This type of atrophy can usually be reversed with exercise unless severe. Astronauts in microgravity must exercise regularly to minimize atrophy of their limb muscles.
There are many diseases and conditions which cause atrophy of muscle mass. For example, diseases such as cancer and AIDS induce a body wasting syndrome called "cachexia", which is notable for the severe muscle atrophy seen. Other syndromes or conditions which can induce skeletal muscle atrophy are congestive heart failure and liver disease.
During aging, there is a gradual decrease in the ability to maintain skeletal muscle function and mass. This condition is called "sarcopenia", and may be distinct from atrophy in its pathophysiology. While the exact cause of sarcopenia is unknown, it may be induced by a combination of a gradual failure in the "satellite cells" which help to regenerate skeletal muscle fibers, and a decrease in sensitivity to or the availability of critical secreted growth factors which are necessary to maintain muscle mass and satellite cell survival.
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.