Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms vary depending on the SMA type, the stage of the disease as well as individual factors. Signs and symptoms below are most common in the severe SMA type 0/I:
- Areflexia, particularly in extremities
- Overall muscle weakness, poor muscle tone, limpness or a tendency to flop
- Difficulty achieving developmental milestones, difficulty sitting/standing/walking
- In small children: adopting of a frog-leg position when sitting (hips abducted and knees flexed)
- Loss of strength of the respiratory muscles: weak cough, weak cry (infants), accumulation of secretions in the lungs or throat, respiratory distress
- Bell-shaped torso (caused by using only abdominal muscles for respiration) in severe SMA type
- Fasciculations (twitching) of the tongue
- Difficulty sucking or swallowing, poor feeding
Usually, the first respiratory symptoms are dyspnea and paradoxical respirations which then escalate within the first few months of life to diaphragmatic paralysis. The symptoms of diaphragmatic paralysis come on very rapidly and without warning, and the patient is often rushed to a hospital where they are placed on a ventilator for respiratory support. Due to the severe nature of diaphragmatic paralysis the patient eventually needs continuous ventilation support to survive. Continuous ventilation, however, may in itself cause damage to the anatomy of the lungs.
In addition to diaphragmatic paralysis other issues may arise: as the name suggests, the distal limbs are most affected with symptoms of weakness, restricting mobility due to (near-)paralysis of the distal limbs as well as the head and neck. Also, dysfunction of the peripheral nerves and the autonomic nervous system may occur. Due to these dysfunctions the patients have been shown to suffer from excessive sweating and irregular heartbeat. The deep tendon reflex is also lost in patients with DSMA1.
Uterine growth retardation and poor foetal movement have been observed in severe DSMA1 cases.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
DSMA1 was identified and classified as a sub-group of spinal muscular atrophies (SMA) in 1974. Currently, various classifications include DSMA1 among general spinal muscular atrophies or distal hereditary motor neuropathies, though the latter has been argued to be more correct.
Individuals with SBMA have muscle cramps and progressive weakness due to degeneration of motor neurons in the brain stem and spinal cord. Ages of onset and severity of manifestations in affected males vary from adolescence to old age, but most commonly develop in middle adult life. The syndrome has neuromuscular and endocrine manifestations.
Early signs often include weakness of tongue and mouth muscles, fasciculations, and gradually increasing weakness of limb muscles with muscle wasting. Neuromuscular management is supportive, and the disease progresses very slowly, but can eventually lead to extreme disability. Further signs and symptoms include:
In terms of the signs/symptoms of Fukuyama congenital muscular dystrophy it is characterized by a decrease in skeletal muscle tone as well as an impairment in brain and eye development.Initial symptoms of FCMD present in early infancy as decreased ability to feed. Marked differences in facial appearance occur due to decreased muscle tone. Further characteristics include:
- Seizures
- Delay in developmental
- Cardiac issues
- Swallowing difficulty
- Neurological problems
Fukuyama congenital muscular dystrophy also affects the nervous system and various associated parts. FCMD affects normal development of the brain producing a broadly smooth, bumpy shaped cortex named cobblestone lissencephaly as well as various other malformations, notably micropolygyria. Children also experience delayed myelination in the brain.
SMA manifests over a wide range of severity, affecting infants through adults. The disease spectrum is variously divided into 3–5 types, in accordance either with the age of onset of symptoms or with the highest attained milestone of motor development.
The most commonly used classification is as follows:
The most severe form of SMA type I is sometimes termed SMA type 0 (or, severe infantile SMA) and is diagnosed in babies that are born so weak that they can survive only a few weeks even with intensive respiratory support. SMA type 0 should not be confused with SMARD1 which may have very similar symptoms and course but has a different genetic cause than SMA.
Motor development in people with SMA is usually assessed using validated functional scales – CHOP INTEND (The Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders) in SMA1; and either the Motor Function Measure scale or one of a few variants of Hammersmith Functional Motor Scale in SMA types 2 and 3.
The eponymous label "Werdnig–Hoffmann disease" (sometimes misspelled with a single "n") refers to the earliest clinical descriptions of childhood SMA by Johann Hoffmann and Guido Werdnig. The eponymous term "Kugelberg–Welander disease" is after Erik Klas Hendrik Kugelberg (1913-1983) and Lisa Welander (1909-2001), who distinguished SMA from muscular dystrophy. Rarely used "Dubowitz disease" (not to be confused with Dubowitz syndrome) is named after Victor Dubowitz, an English neurologist who authored several studies on the intermediate SMA phenotype.
Centronuclear myopathies (CNM) are a group of congenital myopathies where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
Symptoms of CNM include severe hypotonia, hypoxia-requiring breathing assistance, and scaphocephaly. Among centronuclear myopathies, the X-linked myotubular myopathy form typically presents at birth, and is thus considered a congenital myopathy. However, some centronuclear myopathies may present later in life.
Symptoms of JPLS begin in early childhood and progress over a period of 15 to 20 years. Early symptoms include clumsiness, muscle spasms, weakness and stiffness in the legs, and difficulty with balance. As symptoms progress, they become more serious and include weakness and stiffness in the arms and hands, slurred speech, drooling, difficulty swallowing, and an inability to walk.
Congenital distal spinal muscular atrophy (congenital dSMA) is a hereditary genetic condition characterized by muscle wasting (atrophy), particularly of distal muscles in legs and hands, and by early-onset contractures (permanent shortening of a muscle or joint) of the hip, knee, and ankle. Affected individuals often have shorter lower limbs relative to the trunk and upper limbs. The condition is a result of a loss of anterior horn cells localized to lumbar and cervical regions of the spinal cord early in infancy, which in turn is caused by a mutation of the "TRPV4" gene. The disorder is inherited in an autosomal dominant manner. Arm muscle and function, as well as cardiac and respiratory functions are typically well preserved.
In all spinal muscular atrophies, the primary feature is muscle weakness accompanied by atrophy of muscle. This is the result of denervation, or loss of the signal to contract that is transmitted by the motor neurons in the spinal cord. The signal is normally transmitted from the spinal cord to muscle via the motor neuron's axon, but in spinal muscular atrophies either the entire motor neuron or the motor neuron's axon loses the ability to transmit signals to muscles.
The symptoms are strongly related to the exact disease (see above) and, sometimes, to the age of onset. Certain conditions (e.g., spinal muscular atrophy or spinal and bulbar muscular atrophy) have a wide range, from infancy to adult, fatal to trivial, with different affected individuals manifesting every shade of impairment between these two extremes. Other muscular atrophies have a different and often very severe course. Some of them are extremely rare and described only in a handful of individuals. However, in all cases the majority of symptoms are a consequence of muscle weakness.
FLD produces rapidly progressive weakness of tongue, face and pharyngeal muscles in a clinical pattern similar to myasthenia. Neuromuscular transmission may be abnormal in these muscles because of rapid denervation and immature reinnervation. Paralysis occurs secondary to degeneration of the motor neurons of the brain stem. It causes progressive bulbar paralysis due to involvement of motor neurons of the cranial nerve nuclei. The most frequent symptoms at onset of progressive bulbar paralysis of childhood has been a unilateral facial paralysis. It is followed in frequency by dysarthria due to facial weakness or by dysphagia. Palatal weakness and palpebral ptosis also have been reported in few patients. Both sexes can be affected.
Based on the type of muscles affected, spinal muscular atrophies can be divided into:
- "Proximal spinal muscular atrophies", i.e., conditions that affect primarily proximal muscles;
- "Distal spinal muscular atrophies" (which significantly overlap with distal hereditary motor neuronopathies) where they affect primarily distal muscles.
When taking into account prevalence, spinal muscular atrophies are traditionally divided into:
- "Autosomal recessive proximal spinal muscular atrophy", responsible for 90-95% of cases and usually called simply "spinal muscular atrophy" (SMA) – a disorder associated with a genetic mutation on the "SMN1" gene on chromosome 5q (locus 5q13), affecting people of any age but in its most severe form being the most common genetic cause of infant death;
- "Localised spinal muscular atrophies" – much more rare conditions, in some instances described in but a few patients in the world, which are associated with mutations of genes other than "SMN1" and for this reason sometimes termed simply "non-5q spinal muscular atrophies".
A more detailed classification is based on the gene associated with the condition (where identified) and is presented in table below.
In all forms of SMA (with an exception of X-linked spinal muscular atrophy type 1), only motor neurons, located at the anterior horn of spinal cord, are affected; sensory neurons, which are located at the posterior horn of spinal cord, are not affected. By contrast, hereditary disorders that cause both weakness due to motor denervation along with "sensory" impairment due to sensory denervation are known as hereditary motor and sensory neuropathies (HMSN).
Most infants with CMD will display some progressive muscle weakness or muscle wasting (atrophy), although there can be different degrees and symptoms of severeness of progression. The weakness is indicated as "hypotonia", or lack of muscle tone, which can make an infant seem unstable.
Children may be slow with their motor skills; such as rolling over, sitting up or walking, or may not even reach these milestones of life. Some of the more rarer forms of CMD can result in significant learning disabilities.
Fazio–Londe disease (FLD), also called progressive bulbar palsy of childhood, is a very rare inherited motor neuron disease of children and young adults and is characterized by progressive paralysis of muscles innervated by cranial nerves.
Fukuyama congenital muscular dystrophy (FCMD) is a rare, autosomal recessive form of muscular dystrophy (weakness and breakdown of muscular tissue) mainly described in Japan but also identified in Turkish and Ashkenazi Jewish patients, fifteen cases were first described on 1960 by Fukuyama.
FCMD mainly affects the brain, eyes, and muscles, in particular, the disorder affects development of the skeletal muscles leading to weakness and deformed appearances, and brain development is blunted affecting cognitive functioning as well as social skills. In 1995, the disorder was linked to mutations in a gene coding for the protein fukutin (the "FCMD" gene). Fukuyama congenital muscular dystrophy is the second most prevalent form of muscular dystrophy in Japan. One out of every 90 people in Japan is a heterozygous carrier.
Patients with acquired non-inflammatory myopathy typically experience weakness, cramping, stiffness, and tetany, most commonly in skeletal muscle surrounding the limbs and upper shoulder girdle.
The most commonly reported symptoms are:
- Muscle fatigue
- Pain
- Muscle spasms and cramps
- Tingling
- Numbness
- Tetany
- Loss of coordination and balance
- Lack of fine and gross motor control
- Muscular wasting and atrophy
Neuropathy disorders usually have onset in childhood or young adulthood. Motor symptoms seem to be more predominant that sensory symptoms. Symptoms of these disorders include: fatigue, pain, lack of balance, lack of feeling, lack of reflexes, and lack of sight and hearing, which result from muscle atrophy. Patients can also suffer from high arched feet, hammer toes, foot drop, foot deformities, and scoliosis. These symptoms are a result of severe muscular weakness and atrophy. In patients suffering from demyelinating neuropathy, symptoms are due to slow nerve conduction velocities, however people with axonal degradation have average to normal nerve conduction velocities.
Patient feels contracture of middle and ring finger. Slight thinning of the subdigital Palm of the affected fingers. Initial pain and weakness subside with preliminary treatment with antiinflammatories, and B-complex vitamins. Initial loss of function improves almost fully.
The symptoms of MMA usually progress slowly for one to two years before reaching a plateau, and then remain stable for many years. Disability is generally slight. Rarely, the weakness progresses to the opposite limb. There is also a slowly progressive variant of MMA known as O'Sullivan-McLeod syndrome, which only affects the small muscles of the hand and forearm and has a slowly progressive course.
As a result of lower motor neurone degeneration, the symptoms of PMA include:
- atrophy
- fasciculations
- muscle weakness
Some patients have symptoms restricted only to the arms or legs (or in some cases just one of either). These cases are referred to as "Flail Arm" (FA) or "Flail Leg" (FL) and are associated with a better prognosis.
Distal spinal muscular atrophy type 2 (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMN-J) — is a very rare childhood-onset genetic disorder characterised by progressive muscle wasting affecting lower and subsequently upper limbs. The disorder has been described in Arab inhabitants of Jerash region in Jordan as well as in a Chinese family.
The condition is linked to a genetic mutation in the "SIGMAR1" gene on chromosome 19 (locus 19p13.3) and is likely inherited in an autosomal recessive manner.
As with other myopathies, the clinical manifestations of MTM/CNM are most notably muscle weakness and associated disabilities. Congenital forms often present with neonatal low muscle tone, severe weakness, delayed developmental milestones (particularly gross motor milestones such as head control, crawling, and walking) and pulmonary complications (presumably due to weakness of the muscles responsible for respiration). While some patients with centronuclear myopathies remain ambulatory throughout their adult life, others may never crawl or walk and may require wheelchair use for mobility. There is substantial variability in the degree of functional impairment among the various centronuclear myopathies. Although this condition only affects the voluntary muscles, several children have suffered from cardiac arrest, possibly due to the additional stress placed on the heart.
Other observed features have been high arched palate, long digits, bell shaped chest and long face.
Myotubular myopathy only affects muscles and does not impact intelligence in any shape or form.
X-linked myotubular myopathy was traditionally a fatal condition of infancy, with life expectancy of usually less than two years. There appears to be substantial variability in the clinical severity for different genetic abnormalities at that same MTM1 gene. Further, published cases show significant differences in clinical severity among relatives with the same genetic abnormality at the MTM1 gene. Most truncating mutations of MTM1 cause a severe and early lethal phenotype, while some missense mutations are associated with milder forms and prolonged survival (up to 54 years).
Centronuclear myopathies typically have a milder presentation and a better prognosis. Recently, researchers discovered mutations at the gene dynamin 2 (DNM2 on chromosome 19, at site 19p13.2), responsible for the autosomal dominant form of centronuclear myopathy. This condition is now known as dynamin 2 centronuclear myopathy (abbreviated DNM2-CNM). Research has indicated that patients with DNM2-CNM have a slowly progressive muscular weakness usually beginning in adolescence or early adulthood, with an age range of 12 to 74 years.
In contrast to amyotrophic lateral sclerosis or primary lateral sclerosis, PMA is distinguished by the "absence" of:
- brisk reflexes
- spasticity
- Babinski's sign
- Emotional lability