Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Myokymia (from the Greek "-mŷs" – "muscle," + "kŷm", "-kŷmia" – "something swollen" or "-kŷmos" – "wave"), "french", tic facial, is an involuntary, spontaneous, localised quivering of a few muscles, or bundles within a muscle, but which are insufficient to move a joint. One type is superior oblique myokymia.
Myokymia is commonly used to describe an involuntary eyelid muscle contraction, typically involving the lower eyelid or less often the upper eyelid. It occurs in normal individuals and typically starts and disappears spontaneously. However, it can sometimes last up to three weeks. Since the condition typically resolves itself, medical professionals do not consider it to be serious or a cause for concern.
In contrast, facial myokymia is a fine rippling of muscles on one side of the face and may reflect an underlying tumor in the brainstem (typically a brainstem glioma), loss of myelin in the brainstem (associated with multiple sclerosis) or in the recovery stage of Guillain–Barré syndrome, an inflammatory polyneuropathy that may affect the facial nerve.
Myokymia in otherwise unrelated body parts may occur in neuromyotonia.
Typically, episodic ataxia presents as bouts of ataxia induced by startle, stress, or exertion. Some patients also have continuous tremors of various motor groups, known as myokymia. Other patients have nystagmus, vertigo, tinnitus, diplopia or seizures.
Frequent contributing factors include: too much caffeine, high levels of anxiety, fatigue, dehydration, stress, overwork, and a lack of sleep. Use of certain drugs or alcohol may also be factors.
Magnesium deficiency.
The first sign of hemifacial spasm is typically muscle movement in the patient's eyelid and around the eye. It can vary in intensity. The intermittent twitching of the eyelid, which can result in forced closure of the eye which gradually spreads to the muscles of the lower part of the face (Typical form- See Image). In atypical form the spasms start in the cheekbone area and spreads to the eyelid. Ultimately, all the muscles on that side are affected, nearly all the time. This sometimes causes the mouth to be pulled to the side. Experts have linked hemifacial spasm to facial nerve injury, Bell's palsy and tumors. Although the most frequent cause is a blood vessel pressing on the facial nerve at the spot where it leaves the patient's brain stem, sometimes there is no known cause. When the affected individual is younger than 40, doctors suspect an underlying cause such as multiple sclerosis.
Episodic ataxia type-3 (EA3) is similar to EA1 but often also presents with tinnitus and vertigo. Patients typically present with bouts of ataxia lasting less than 30 minutes and occurring once or twice daily. During attacks, they also have vertigo, nausea, vomiting, tinnitus and diplopia. These attacks are sometimes accompanied by headaches and precipitated by stress, fatigue, movement and arousal after sleep. Attacks generally begin in early childhood and last throughout the patients' lifetime. Acetazolamide administration has proved successful in some patients. As EA3 is extremely rare, there is currently no known causative gene. The locus for this disorder has been mapped to the long arm of chromosome 1 (1q42).
Facial Synkinesis is a common sequela to Idiopathic Facial Nerve Paralysis, also called Bell’s Palsy or Facial Palsy. Bell’s Palsy, which is thought to occur due to a viral reactivation which can lead (through unknown mechanisms) to diffuse axon demyelination and degeneration of the seventh cranial nerve, results in a hemifacial paralysis due to non-functionality of the nerve. As the nerve attempts to recover, nerve miswiring results (see Mechanism of Action below). In patients with severe facial nerve paralysis, facial synkinesis will inevitably develop.
Additionally, a common treatment option for facial palsy is to use electrical stimulation. Unfortunately, this has been shown to be disruptive to normal re-innervation and can promote the development of synkinesis.
The most common symptoms of facial synkinesis include:
- Eye closure with volitional contraction of mouth muscles
- Midfacial movements with volitional eye closure
- Neck tightness (Platysmal contraction) with volitional smiling
- Hyperlacrimation(also called Crocodile Tears)
- A case where eating provokes excessive lacrimation. This has been attributed to neural interaction between the salivary glands and the lacrimal glands.
Hemifacial spasm (HFS) is a rare neuromuscular disease characterized by irregular, involuntary muscle contractions (spasms) on one side (hemi-) of the face (-facial). The facial muscles are controlled by the facial nerve (seventh cranial nerve), which originates at the brainstem and exits the skull below the ear where it separates into five main branches.
This disease takes two forms: typical and atypical. In typical form, the twitching usually starts in the lower eyelid in orbicularis oculi muscle. As time progresses, it spreads to the whole lid, then to the orbicularis oris muscle around the lips, and buccinator muscle in the cheekbone area. The reverse process of twitching occurs in atypical hemifacial spasm; twitching starts in orbicularis oris muscle around the lips, and buccinator muscle in the cheekbone area in the lower face, then progresses up to the orbicularis oculi muscle in the eyelid as time progresses. The most common form is the typical form, and atypical form is only seen in about 2–3% of patients with hemifacial spasm. The incidence of hemifacial spasm is approximately 0.8 per 100,000 persons.
This disorder occurs in both men and women, although it affects middle-aged or elderly women more frequently. Hemifacial spasm is much more common in some Asian populations. It may be caused by a facial nerve injury, a tumor, or it may have no apparent cause. Individuals with spasm on both sides of the face are very rare.
Synkinesis is the result from miswiring of nerves after trauma. This result is manifested through involuntary muscular movements accompanying voluntary movements. For example, voluntary smiling will induce an involuntary contraction of the eye muscles causing the eye to squint when smiling. Most commonly involved are facial muscles and the extraocular muscles, rarely the hands are performing mirror movements.
Causes are diverse and include nerve trauma with improper healing, or nerve degeneration, as in the course of Parkinson´s disease. In congenital cases, mutations of genes involved in nerve growth, specifically axonal growth have been found. Rarely, it is part of syndromes with neuroendocrine problems such as Kallman syndrome.
The prognosis is usually good with normal intelligence and lifespan. Treatment depends on the cause, but is largely conservative with facial retraining or mime therapy, if needed, while Botox and surgery are used as last resort.
Central facial palsy (colloquially referred to as central seven) is a symptom or finding characterized by paralysis or paresis of the lower half of one side of the face. It usually results from damage to upper motor neurons of the facial nerve.
The facial motor nucleus has dorsal and ventral divisions that contain lower motor neurons supplying the muscles of the upper and lower face, respectively. The dorsal division receives upper motor neuron input (i.e. from both sides of the brain) while the ventral division receives only contralateral input (i.e. from the opposite side of the brain).
Thus, lesions of the corticobulbar tract between the cerebral cortex and pons and the facial motor nucleus destroy or reduce input to the ventral division, but ipsilateral input (i.e. from the same side) to the dorsal division is retained. As a result, central facial palsy is characterized by hemiparalysis or hemiparesis of the contralateral muscles of facial expression, but not the muscles of the forehead.
NMT is a diverse disorder. As a result of muscular hyperactivity, patients may present with muscle cramps, stiffness, myotonia-like symptoms (slow relaxation), associated walking difficulties, hyperhidrosis (excessive sweating), myokymia (quivering of a muscle), fasciculations (muscle twitching), fatigue, exercise intolerance, myoclonic jerks and other related symptoms. The symptoms (especially the stiffness and fasciculations) are most prominent in the calves, legs, trunk, and sometimes the face and neck, but can also affect other body parts. NMT symptoms may fluctuate in severity and frequency. Symptoms range from mere inconvenience to debilitating. At least a third of people also experience sensory symptoms.
Central facial palsy is the paralysis of the lower half of one side of the face. This condition is often caused by a stroke. This condition is often the result of damage of the upper motor neurons of the facial nerve. The facial motor nucleus contains ventral and dorsal areas that have lower motor neurons that supply the upper and lower face muscles. When central facial palsy occurs, there are lesions in the corticobulbar tract between the cerebral cortex. Because of these lesions, the facial motor nucleus reduces or destroys input in the ventral division. The ipsilateral input in the dorsal region is preserved.
Central facial palsy is often characterized by either hemiparalysis or hemiparesis of the contra-lateral muscles in facial expression. Muscles on the forehead are left intact. Also, most patients have lost voluntary control of muscle movement in the face—however, muscles in the face involved in spontaneous emotional expression often remain intact. Central Facial palsy occurs in patients who are hemiplegic. Such patients not only have dysfunctions in the facial expression but also a difficulty in communication. Other oropharyngeal functions such as sucking, swallowing, and talking are also impaired.
Central facial paralysis/palsy often has similar characteristics with stroke patients. Because of uncrossed areas from the ipsilateral and the supranuclear areas, movements in the frontalis and upper orbicularis oculi are often spared. Facial movement can be present on the affected side when the person expresses emotion. Damage to the central nervous system motor pathway from the cerebral cortex to the facial nuclei is found in the pons. This leads to facial weakness that spares various muscles in the face depending on the type of paralysis. The discrepancy of the weakness between the upper and lower facial muscles are due to the bilateral corticonuclear innervation from the upper facial muscles and contralateral corticonuclear innervation to the lower facial muscles.
In one of the few reported cases, the subject presented with muscle weakness and fatigue, muscle twitching, excessive sweating and salivation, small joint pain, itching and weight loss. The subject also developed confusional episodes with spatial and temporal disorientation, visual and auditory hallucinations, complex behavior during sleep and progressive nocturnal insomnia associated with diurnal drowsiness. There was also severe constipation, urinary incontinence, and excessive lacrimation. When left alone, the subject would slowly lapse into a stuporous state with dreamlike episodes characterized by complex and quasi-purposeful gestures and movements (enacted dreams). Marked hyperhidrosis and excessive salivation were evident. Neurological examination disclosed diffuse muscle twitching and spontaneous and reflex myoclonus, slight muscle atrophy in the limbs, absence of tendon reflexes in the lower limbs and diffuse erythema especially on the trunk with scratching lesions of the skin.
Compulsive behaviours, stereotypies and reduplicative paramnesias can be part of the CNS spectrum.
Facial nerve paralysis is characterised by unilateral facial weakness, with other symptoms including loss of taste, , and decreased salivation and tear secretion. Other signs may be linked to the cause of the paralysis, such as s in the ear, which may occur if the facial palsy is due to shingles. Symptoms may develop over several hours. Acute facial pain radiating from the ear may precede the onset of other symptoms.
There are three main types of NMT:
- Chronic
- Monophasic (symptoms that resolve within several years of onset; postinfection, postallergic)
- Relapsing Remitting
Sixth nerve palsy, or abducens nerve palsy, is a disorder associated with dysfunction of cranial nerve VI (the abducens nerve), which is responsible for causing contraction of the lateral rectus muscle to abduct (i.e., turn out) the eye. The inability of an eye to turn outward results in a convergent strabismus or esotropia of which the primary symptom is diplopia (commonly known as double vision) in which the two images appear side-by-side. The condition is commonly unilateral but can also occur bilaterally.
The unilateral abducens nerve palsy is the most common of the isolated ocular motor nerve palsies.
The nerve dysfunction induces esotropia, a convergent squint on distance fixation. On near fixation the affected individual may have only a latent deviation and be able to maintain binocularity or have an esotropia of a smaller size. Patients sometimes adopt a face turned towards the side of the affected eye, moving the eye away from the field of action of the affected lateral rectus muscle, with the aim of controlling diplopia and maintaining binocular vision.
Diplopia is typically experienced by adults with VI nerve palsies, but children with the condition may not experience diplopia due to suppression. The neuroplasticity present in childhood allows the child to 'switch off' the information coming from one eye, thus relieving any diplopic symptoms. Whilst this is a positive adaptation in the short term, in the long term it can lead to a lack of appropriate development of the visual cortex giving rise to permanent visual loss in the suppressed eye; a condition known as amblyopia.
In all of the reported cases, the need for sleep was severely reduced and in some cases not necessary. The duration of sleep in one case decreased to about 2–4 hours per 24-hour period. Clinical features pertaining to insomnia include daytime drowsiness associated with a loss of ability to sleep, intermingled with confusional oneiric status, and the emergence of atypical REM sleep from wakefulness. The Polysomnogram (PSG) picture of this disease is characterized by an inability to generate physiological sleep (key features are the suppression of the hallmarks of stage 2 non-REM sleep: spindles and K complexes) and by the emergence of REM sleep without atonia. The involvement of the thalamus and connected limbic structures in the pathology indicate the prominent role that the limbic thalamus plays in the pathophysiology of sleep. In a case documented in 1974, PSG findings documented the sustained absence of all sleep rhythms for up to a period of 4 months.
Electroencephalography (EEG) in one case was dominated by "wakefulness" and “subwakefulness” states alternating or intermingled with short (< 1 min) atypical REM sleep phases, characterized by a loss of muscle atonia. The “subwakefulness” state was characterized by 4–6 Hz theta activity intermingled with fast activity and desynchronized lower voltage theta activity, behaviourally associated with sleep-like somatic and autonomic behavior. The subject was said to suffer from “agrypnia excitata”, which consists of severe total insomnia of long duration associated with decreased vigilance, mental confusion, hallucinations, motor agitation, and complex motor behavior mimicking dreams, and autonomic activation. CNS and autonomic symptoms were caused by impaired corticolimbic control of the subcortical structures regulating the sleep-wake and autonomic functions.
Superior oblique myokymia is a neurological disorder affecting vision and was named by Hoyt and Keane in 1970.
It is a condition that presents as repeated, brief episodes of movement, shimmering or shaking of the vision of one eye, a feeling of the eye trembling, or vertical/tilted vision. It can present as one or more of these symptoms. Diagnosis is most often made by the elimination of other conditions, disorders or diseases.
Onset usually occurs in adulthood, and the course is benign and is not commonly associated with other disorders.
Facial nerve paralysis is a common problem that involves the paralysis of any structures innervated by the facial nerve. The pathway of the facial nerve is long and relatively convoluted, and so there are a number of causes that may result in facial nerve paralysis. The most common is Bell's palsy, a disease of unknown cause that may only be diagnosed by exclusion.
Hypomimia (masked facies, masking of facies), a medical sign, is a reduced degree of facial expression. It can be caused by motor impairment (for example, weakness or paralysis of the facial muscles), as in Parkinson's disease, or by other causes, such as psychological or psychiatric factors (for example, if a patient does not feel emotions and thus does not show any expression).
Persons receiving excessive Botox treatments, and thusly losing disproportionate facial expression features may be incorrectly identified as suffering hypomimia.
In 1983, Bringewald postulated that superior oblique myokymia resulted from vascular compression of the trochlear nerve (fourth cranial nerve), which controls the action of the superior oblique muscle in the eye. By 1998, there had been only one reported case of compression of the trochlear nerve by vessels.
More recently, magnetic resonance imaging experiments have shown that neurovascular compression at the root exit zone of the trochlear nerve can result in superior oblique myokymia.
Infants with the disorder exhibit an inverted smile; they appear to be crying when they are actually smiling, in conjunction with uropathy. They also may be affected by hydronephrosis. Symptoms of this disease can start at very young ages. Many people with this syndrome will die in their teens to early 20s because of the renal failure (uropathy) if not diagnosed and treated. Children with the syndrome have abnormal facial development that cause an inverted smile, nerve connections are however normal. When attempting to smile, the child will appear to cry. Urinary problems arise as a result of a neurogenic bladder. Most patients older than the age of toilet training, present with enuresis, urinary-tract infection, hydronephrosis, and a spectrum of radiological abnormalities typical of obstructive or neurogenic bladders. Radiological abnormalities include things such as: trabeculated bladder, vesicoureteral reflex, external sphincter spasm, pyelonephritis, hyperreflexic bladder, noninhibited detrusor contraction, etc.. Urinary abnormalities might result in renal deterioration and failure. This can be prevented by taking proper measures to restore normal micturition and by taking antibiotics to prevent infections. In some cases, the affected patients become hypertensive and progress to end-stage renal disease, while others become uremic. Additionally, most patients suffer from constipation.
Early detection of this syndrome is possible through the peculiar faces that children present.
Facial features found in this syndrome include
- dolichocephaly
- hypertelorism
- ptosis
- microretrognathia
- high arched palate
- long flat philtrum
- low set ears
Non facial features of this syndrome include
- hyperextensibility
- hypotonia
- lateral meningoceles
The lateral meningocoles are a common finding in this syndrome. They may be associated with neurological abnormalities and result in bladder dysfunction and neuropathy.
MRI: medial temporal lobe signal change bilateral hippocampal lesions, with signals that were hypointense in IR sequences and hyperintense in FLAIR.
Movement Disorder
- Dystonia
- Parkinsonism
- Chorea
- Ocular flutter
- Motor tics
Psychiatric Symptoms
- Agitation
- Emotional lability
- Psychosis
- Depression
Associated symptoms
- Encephalopathy
- Sleep disorder
- Reduced consciousness
- Mutism