Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The first indication of iron poisoning by ingestion is stomach pain, as iron is corrosive to the lining of the gastrointestinal tract, including the stomach. Nausea and vomiting are also common symptoms and bloody vomiting may occur. The pain then abates for 24 hours as the iron passes deeper into the body, resulting in metabolic acidosis, which in turn damages internal organs, particularly the brain and the liver. Iron poisoning can cause hypovolemic shock due to iron's potent ability to dilate the blood vessels. Death may occur from liver failure.
If intake of iron is for a prolonged period of time, symptoms are likely to be similar to other causes of iron overload.
In nature, iron is usually found in its oxidized form, iron (III) oxide, which is insoluble. Ferrous iron, iron (II), is soluble and its toxicity varies, largely with the integrity of the gastrointestinal lining. Iron supplements are typically used to treat anemia. Modalities include: diet, parasite control, vitamin A, riboflavin (B), vitamin C (for absorption), folate(B), vitamin B and multivitamin-multimineral supplements, with or without iron; potentially avoiding the use of iron only supplements.
Symptoms can vary from one person to another. It depends on the extent of accumulation and on the body location of the accumulation. African iron overload can be considered in patient with some of these conditions.
African iron overload, also known as (Bantu siderosis, or Dietary iron overload), is an iron overload disorder first observed among people of African descent in Southern Africa and Central Africa.
Dietary iron overload is the consumption of large amount of home-brewed beer with high amount of iron content in it. Preparing beer in iron pots or drums results in high iron content. The iron content in home-brewed beer is around 46–82 mg/l compared to 0.5 mg/l in commercial beer. Dietary overload was prevalent in both the rural and urban Black African population, with the introduction of commercial beer in urban areas, the condition has decreased. However, the condition is still common in rural areas. Until recently, studies have shown that genetics might play a role in this disorder. Combination of excess iron and functional changes in ferroportin seems to be the probable cause. This disorder can be treated with phlebotomy therapy or (iron-chelation) therapy.
Lead poisoning can cause a variety of symptoms and signs which vary depending on the individual and the duration of lead exposure. Symptoms are nonspecific and may be subtle, and someone with elevated lead levels may have no symptoms. Symptoms usually develop over weeks to months as lead builds up in the body during a chronic exposure, but acute symptoms from brief, intense exposures also occur.
Symptoms from exposure to organic lead, which is probably more toxic than inorganic lead due to its lipid solubility, occur rapidly. Poisoning by organic lead compounds has symptoms predominantly in the central nervous system, such as insomnia, delirium, cognitive deficits, tremor, hallucinations, and convulsions.
Symptoms may be different in adults and children; the main symptoms in adults are headache, abdominal pain, memory loss, kidney failure, male reproductive problems, and weakness, pain, or tingling in the extremities.
Early symptoms of lead poisoning in adults are commonly nonspecific and include depression, loss of appetite, intermittent abdominal pain, nausea, diarrhea, constipation, and muscle pain. Other early signs in adults include malaise, fatigue, decreased libido, and problems with sleep. An unusual taste in the mouth and personality changes are also early signs.
In adults, symptoms can occur at levels above 40 μg/dL, but are more likely to occur only above 50–60 μg/dL. Symptoms begin to appear in children generally at around 60 μg/dL. However, the lead levels at which symptoms appear vary widely depending on unknown characteristics of each individual. At blood lead levels between 25 and 60 μg/dL, neuropsychiatric effects such as delayed reaction times, irritability, and difficulty concentrating, as well as slowed motor nerve conduction and headache can occur. Anemia may appear at blood lead levels higher than 50 μg/dL. In adults, abdominal colic, involving paroxysms of pain, may appear at blood lead levels greater than 80 μg/dL. Signs that occur in adults at blood lead levels exceeding 100 μg/dL include wrist drop and foot drop, and signs of encephalopathy (a condition characterized by brain swelling), such as those that accompany increased pressure within the skull, delirium, coma, seizures, and headache. In children, signs of encephalopathy such as bizarre behavior, discoordination, and apathy occur at lead levels exceeding 70 μg/dL. For both adults and children, it is rare to be asymptomatic if blood lead levels exceed 100 μg/dL.
In acute poisoning, typical neurological signs are pain, muscle weakness, numbness and tingling, and, rarely, symptoms associated with inflammation of the brain. Abdominal pain, nausea, vomiting, diarrhea, and constipation are other acute symptoms. Lead's effects on the mouth include astringency and a metallic taste. Gastrointestinal problems, such as constipation, diarrhea, poor appetite, or weight loss, are common in acute poisoning. Absorption of large amounts of lead over a short time can cause shock (insufficient fluid in the circulatory system) due to loss of water from the gastrointestinal tract. Hemolysis (the rupture of red blood cells) due to acute poisoning can cause anemia and hemoglobin in the urine. Damage to kidneys can cause changes in urination such as decreased urine output. People who survive acute poisoning often go on to display symptoms of chronic poisoning.
Symptoms of iron deficiency can occur even before the condition has progressed to iron deficiency anemia.
Symptoms of iron deficiency are not unique to iron deficiency (i.e. not pathognomonic). Iron is needed for many enzymes to function normally, so a wide range of symptoms may eventually emerge, either as the secondary result of the anemia, or as other primary results of iron deficiency. Symptoms of iron deficiency include:
- fatigue
- dizziness/lightheadedness
- pallor
- hair loss
- twitches
- irritability
- weakness
- pica
- brittle or grooved nails
- hair thinning
- Plummer–Vinson syndrome: painful atrophy of the mucous membrane covering the tongue, the pharynx and the esophagus
- impaired immune function
- pagophagia
- restless legs syndrome
Continued iron deficiency may progress to anaemia and worsening fatigue. Thrombocytosis, or an elevated platelet count, can also result. A lack of sufficient iron levels in the blood is a reason that some people cannot donate blood.
Copper toxicity, also called copperiedus, refers to the consequences of an excess of copper in the body. Copperiedus can occur from eating acid foods cooked in uncoated copper cookware, or from exposure to excess copper in drinking water or other environmental sources.
ICD-9-CM code 985.8 "Toxic effect of other specified metals" includes acute & chronic copper poisoning (or other toxic effect) whether intentional, accidental, industrial etc.
- In addition, it includes poisoning and toxic effects of other metals including tin, selenium nickel, iron, heavy metals, thallium, silver, lithium, cobalt, aluminum and bismuth. Some poisonings, e.g. zinc phosphide, would/could also be included as well as under 989.4 Poisoning due to other pesticides, etc.
- Excluded are toxic effects of mercury, arsenic, manganese, beryllium, antimony, cadmium, and chromium.
Symptoms of arsenic poisoning begin with headaches, confusion, severe diarrhea, and drowsiness. As the poisoning develops, convulsions and changes in fingernail pigmentation called leukonychia striata (Mees's lines, or Aldrich-Mees's lines) may occur. When the poisoning becomes acute, symptoms may include diarrhea, vomiting, vomiting blood, blood in the urine, cramping muscles, hair loss, stomach pain, and more convulsions. The organs of the body that are usually affected by arsenic poisoning are the lungs, skin, kidneys, and liver. The final result of arsenic poisoning is coma and death.
Arsenic is related to heart disease (hypertension-related cardiovascular disease), cancer, stroke (cerebrovascular diseases), chronic lower respiratory diseases, and diabetes.
Chronic exposure to arsenic is related to vitamin A deficiency, which is related to heart disease and night blindness.
Inorganic arsenites (arsenic(III)) in drinking water have a much higher acute toxicity than organic arsenates (arsenic(V)). The acute minimal lethal dose of arsenic in adults is estimated to be 70 to 200 mg or 1 mg/kg/day.
Chronic exposure to excessive manganese levels can lead to a variety of psychiatric and motor disturbances, termed manganism. Generally, exposure to ambient manganese air concentrations in excess of 5 micrograms Mn/m can lead to Mn-induced symptoms.
In initial stages of manganism, neurological symptoms consist of reduced response speed, irritability, mood changes, and compulsive behaviors. Upon protracted exposure symptoms are more prominent and resemble those of idiopathic Parkinson's disease, as which it is often misdiagnosed, although there are particular differences in both the symptoms (nature of tremors, for example), response to drugs such as levodopa, and affected portion of the basal ganglia. Symptoms are also similar to Lou Gehrig's disease and multiple sclerosis.
Iron deficiency happens when a body has not enough (or not qualitatively enough) iron to supply its eventual needs. Iron is present in all cells in the human body and has several vital functions, such as: carrying oxygen to the tissues from the lungs as a key component of the hemoglobin protein; acting as a transport medium for electrons within the cells in the form of cytochromes; facilitating oxygen enzyme reactions in various tissues. Too little iron can interfere with these vital functions and lead to morbidity and death.
Total body iron averages approximately 3.8 g in men and 2.3 g in women. In blood plasma, iron is carried tightly bound to the protein transferrin. There are several mechanisms that control human iron metabolism and safeguard against iron deficiency. The main regulatory mechanism is situated in the gastrointestinal tract. When loss of iron is not sufficiently compensated by adequate intake of iron from the diet, a state of iron deficiency develops over time. When this state is uncorrected, it leads to iron deficiency anemia. Before anemia occurs, the medical condition of iron deficiency without anemia is called latent iron deficiency (LID) or Iron-deficient erythropoiesis (IDE).
Untreated iron deficiency can lead to iron deficiency anemia, a common type of anemia. Anemia is a condition characterized by inadequate red blood cells (erythrocytes) or hemoglobin. Iron deficiency anemia occurs when the body lacks sufficient amounts of iron, resulting in reduced production of the protein hemoglobin. Hemoglobin binds to oxygen, thus enabling red blood cells to supply oxygenated blood throughout the body. Children, pre-menopausal women (women of child-bearing age) and people with poor diet are most susceptible to the disease. Most cases of iron deficiency anemia are mild, but if not treated can cause problems like fast or irregular heartbeat, complications during pregnancy, and delayed growth in infants and children.
Hypervitaminosis is a condition of abnormally high storage levels of vitamins, which can lead to toxic symptoms. Specific medical names of the different conditions are derived from the vitamin involved: an excess of vitamin A, for example, is called hypervitaminosis A.
Hypervitaminoses are primarily caused by fat-soluble vitamins (D, E, K and A), as these are stored by the body for longer period than the water-soluble vitamins.
Generally, toxic levels of vitamins stem from high supplement intake and not from natural food. Toxicities of fat-soluble vitamins can also be caused by a large intake of highly fortified foods, but natural food rarely deliver dangerous levels of fat-soluble vitamins. The Dietary Reference Intake recommendations from the United States Department of Agriculture define a "tolerable upper intake level" for most vitamins.
Siderosis is the deposition of iron in tissue.
When used without qualification, it usually refers to an environmental disease of the lung.
Also Siderosis Bulbi, deposition of iron into the eye causing injury as the material chemically reacts with tissues and cells.
Arsenic poisoning is a medical condition that occurs due to elevated levels of arsenic in the body. If exposure occurs over a brief period of time symptoms may include vomiting, abdominal pain, encephalopathy, and watery diarrhea that contains blood. Long-term exposure can result in thickening of the skin, darker skin, abdominal pain, diarrhea, heart disease, numbness, and cancer.
The most common reason for long-term exposure is contaminated drinking water. Groundwater most often becomes contaminated naturally; however, contamination may also occur from mining or agriculture. Recommended levels in water are less than 10–50 µg/l (10–50 parts per billion). Other routes of exposure include toxic waste sites and traditional medicines. Most cases of poisoning are accidental. Arsenic acts by changing the functioning of around 200 enzymes. Diagnosis is by testing the urine, blood, or hair.
Prevention is by using water that does not contain high levels of arsenic. This may be achieved by the use of special filters or using rainwater. There is not good evidence to support specific treatments for long-term poisoning. For acute poisonings treating dehydration is important. Dimercaptosuccinic acid (DMSA) or dimercaptopropane sulfonate (DMPS) may be used while dimercaprol (BAL) is not recommended. Hemodialysis may also be used.
Through drinking water, more than 200 million people globally are exposed to higher than safe levels of arsenic. The areas most affected are Bangladesh and West Bengal. Acute poisoning is uncommon. The toxicity of arsenic has been described as far back as 1500 BC in the Ebers papyrus.
Manganism or manganese poisoning is a toxic condition resulting from chronic exposure to manganese. It was first identified in 1837 by James Couper.
With few exceptions, like some vitamins from B-complex, hypervitaminosis usually occurs more with fat-soluble vitamins (D, E, K and A or 'DEKA'), which are stored in the liver and fatty tissues of the body. These vitamins build up and remain for a longer time in the body than water-soluble vitamins.
Conditions include:
- Hypervitaminosis A
- Hypervitaminosis D
- Hypervitaminosis E
- Hypervitaminosis K, unique as the true upper limit is less clear as is its bioavailability.
According to Williams' Essentials of Diet and Nutrition Therapy it is difficult to set a DRI for vitamin K because part of the requirement can be met by intestinal bacterial synthesis.
- Reliable information is lacking as to the vitamin K content of many foods or its bioavailability. With this in mind the Expert Committee established an AI rather than an RDA.
- This RDA (AI for men age 19 and older is 120 µg/day, AI for women is 90 µg/day) is adequate to preserve blood clotting, but the correct intake needed for optimum bone health is unknown. Toxicity has not been reported.
High-dosage A; high-dosage, slow-release vitamin B; and very high-dosage vitamin B alone (i.e. without vitamin B complex) hypervitaminoses are sometimes associated with side effects that usually rapidly cease with supplement reduction or cessation.
High doses of mineral supplements can also lead to side effects and toxicity. Mineral-supplement poisoning does occur occasionally, most often due to excessive intake of iron-containing supplements.
Iron (Fe) deficiency is a plant disorder also known as "lime-induced chlorosis". It can be confused with manganese deficiency. A deficiency in the soil is rare but iron can be unavailable for absorption if soil pH is not between about 5 and 6.5. A common problem is excessive alkalinity of the soil (the pH is above 6.5). Also, iron deficiency can develop if the soil is too waterlogged or has been overfertilised. Elements like calcium, zinc, manganese, phosphorus, or copper can tie up iron if they are present in high amounts.
Iron is needed to produce chlorophyll, hence its deficiency causes chlorosis. For example, iron is used in the active site of glutamyl-tRNA reductase, an enzyme needed for the formation of 5-Aminolevulinic acid which is a precursor of heme and chlorophyll.
Symptoms include leaves turning yellow or brown in the margins between the veins which may remain green, while young leaves may appear to be bleached. Fruit would be of poor quality and quantity. Any plant may be affected, but raspberries and pears are particularly susceptible, as well as most acid-loving plants such as azaleas and camellias.
Signs of ethylene glycol poisoning depend upon the time after ingestion. Symptoms usually follow a three-step progression, although poisoned individuals will not always develop each stage.
- Stage 1 (30 minutes to 12 hours) consists of neurological and gastrointestinal symptoms and looks similar to alcohol poisoning. Poisoned individuals may appear to be intoxicated, dizzy, lacking coordination of muscle movements, drooling, depressed, and have slurred speech, seizuring, abnormal eye movements, headaches, and confusion. Irritation to the stomach may cause nausea and vomiting. Also seen are excessive thirst and urination. Over time, the body metabolizes ethylene glycol into other toxins.
- Stage 2 (12 to 36 hours) where signs of "alcohol" poisoning appear to resolve, underlying severe internal damage is still occurring. An elevated heart rate, hyperventilation or increased breathing effort, and dehydration may start to develop, along with high blood pressure and metabolic acidosis. These symptoms are a result of accumulation of organic acids formed by the metabolism of ethylene glycol. Additionally low calcium concentrations in the blood, overactive muscle reflexes, muscle spasms, QT interval prolongation, and congestive heart failure may occur. If untreated, death most commonly occurs during this period.
- Stage 3 (24 to 72 hours) kidney failure is the result of ethylene glycol poisoning. In cats, this stage occurs 12–24 hours after getting into antifreeze; in dogs, at 36–72 hours after getting into antifreeze. During this stage, severe kidney failure is developing secondary to calcium oxalate crystals forming in the kidneys. Severe lethargy, coma, depression, vomiting, seizures, drooling, and inappetance may be seen. Other symptoms include acute tubular necrosis, red blood cells in the urine, excess proteins in the urine, lower back pain, decreased or absent production of urine, elevated blood concentration of potassium, and acute kidney failure. If kidney failure occurs it is typically reversible, although weeks or months of supportive care including hemodialysis may be required before kidney function returns.
Common symptoms of mercury poisoning include peripheral neuropathy, presenting as paresthesia or itching, burning, pain, or even a sensation that resembles small insects crawling on or under the skin (formication); skin discoloration (pink cheeks, fingertips and toes); swelling; and desquamation (shedding or peeling of skin).
Mercury irreversibly inhibits selenium-dependent enzymes (see below) and may also inactivate "S"-adenosyl-methionine, which is necessary for catecholamine catabolism by catechol-"O"-methyl transferase. Due to the body's inability to degrade catecholamines (e.g. epinephrine), a person suffering from mercury poisoning may experience profuse sweating, tachycardia (persistently faster-than-normal heart beat), increased salivation, and hypertension (high blood pressure).
Affected children may show red cheeks, nose and lips, loss of hair, teeth, and nails, transient rashes, hypotonia (muscle weakness), and increased sensitivity to light. Other symptoms may include kidney dysfunction (e.g. Fanconi syndrome) or neuropsychiatric symptoms such as emotional lability, memory impairment, or insomnia.
Thus, the clinical presentation may resemble pheochromocytoma or Kawasaki disease. Desquamation (skin peeling) can occur with severe mercury poisoning acquired by handling elemental mercury.
Organs commonly affected by haemochromatosis are the liver, heart, and endocrine glands.
Haemochromatosis may present with the following clinical syndromes:
- Cirrhosis of the liver: Varies from zonal iron deposition to fibrosis (cirrhosis).
- Diabetes due to selective iron deposition in pancreatic islet beta cells leading to functional failure and cell death.
- Cardiomyopathy
- Arthritis, from calcium pyrophosphate deposition in joints. The most commonly affected joints are those of the hands, particularly the knuckles of the second and third fingers.
- Testicular failure
- Bronzing of the skin. This deep tan color, in concert with insulin insufficiency due to pancreatic damage, is the source of a nickname for this condition: "bronze diabetes".
- Joint pain and bone pain
Cobalt poisoning is intoxication caused by excessive levels of cobalt in the body. Cobalt is an essential element for health in animals in minute amounts as a component of Vitamin B. A deficiency of cobalt, which is very rare, is also potentially lethal, leading to pernicious anemia.
Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur even after drinking a small amount.
Ethylene glycol is a colorless, odorless, sweet liquid, commonly found in antifreeze. It may be drunk accidentally or purposefully in an attempt to cause death. When broken down by the body it results in glycolic acid and oxalic acid which cause most of the toxicity. The diagnosis may be suspected when calcium oxalate crystals are seen in the urine or when acidosis or an increased osmol gap is present in the blood. Diagnosis may be confirmed by measuring ethylene glycol levels in the blood; however, many hospitals do not have the ability to perform this test.
Early treatment increases the chance of a good outcome. Treatment consists of stabilizing the person, followed by the use of an antidote. The preferred antidote is fomepizole with ethanol used if this is not available. Hemodialysis may also be used in those where there is organ damage or a high degree of acidosis. Other treatments may include sodium bicarbonate, thiamine, and magnesium.
More than 5000 cases of poisoning occur in the United States each year. Those affected are often adults and male. Deaths from ethylene glycol have been reported as early as 1930. An outbreak of deaths in 1937 due to a medication mixed in a similar compound, diethylene glycol, resulted in the Food, Drug, and Cosmetic Act of 1938 in the United States which mandated evidence of safety before new medications could be sold. Antifreeze products sometimes have a substance to make it bitter added to discourage drinking by children and other animals but this has not been found to be effective.
Latent iron deficiency (LID), also called iron-deficient erythropoiesis, is a medical condition in which there is evidence of iron deficiency without anemia (normal hemoglobin level). It is important to assess this condition because it is accepted that individuals with latent iron deficiency will develop iron-deficiency anemia in the weeks or months following diagnoses of LID if they are not treated with iron supplementation. In addition, there is some evidence of a decrease in vitality and an increase in fatigue among individuals that have LID.
The clinical features of LID are in discussion, some studies have not shown a clear difference between individuals with LID and control a group of the same age, gender and origin without LID. But may be it is not wrong to say that the persons with LID have a mild decrease in vitality and increase of fatigue. What seems important for preventive healthcare is to detect this medical condition, because it will avoid the patient probably developing an iron-deficiency anemia.