Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Intrauterine hypoxia occurs when the fetus is deprived of an adequate supply of oxygen. It may be due to a variety of reasons such as prolapse or occlusion of the umbilical cord, placental infarction and maternal smoking. Intrauterine growth restriction (IUGR) may cause or be the result of hypoxia. Intrauterine hypoxia can cause cellular damage that occurs within the central nervous system (the brain and spinal cord). This results in an increased mortality rate, including an increased risk of sudden infant death syndrome (SIDS). Oxygen deprivation in the fetus and neonate have been implicated as either a primary or as a contributing risk factor in numerous neurological and neuropsychiatric disorders such as epilepsy, ADHD, eating disorders and cerebral palsy.
The symptoms of generalized hypoxia depend on its severity and acceleration of onset.
In the case of altitude sickness, where hypoxia develops gradually, the symptoms include fatigue, numbness / tingling of extremities, nausea, and anoxia. In severe hypoxia, or hypoxia of very rapid onset, ataxia, confusion / disorientation / hallucinations / behavioral change, severe headaches / reduced level of consciousness, papilloedema, breathlessness, pallor, tachycardia, and pulmonary hypertension eventually leading to the late signs cyanosis, slow heart rate / cor pulmonale, and low blood pressure followed by death.
Because hemoglobin is a darker red when it is not bound to oxygen (deoxyhemoglobin), as opposed to the rich red color that it has when bound to oxygen (oxyhemoglobin), when seen through the skin it has an increased tendency to reflect blue light back to the eye. In cases where the oxygen is displaced by another molecule, such as carbon monoxide, the skin may appear 'cherry red' instead of cyanotic. Hypoxia can cause premature birth, and injure the liver, among other deleterious effects.
There are various causes for intrauterine hypoxia (IH). The most preventable cause is maternal smoking. Cigarette smoking by expectant mothers has been shown to have a wide variety of deleterious effects on the developing fetus. Among the negative effects are carbon monoxide induced tissue hypoxia and placental insufficiency which causes a reduction in blood flow from the uterus to the placenta thereby reducing the availability of oxygenated blood to the fetus. Placental insufficiency as a result of smoking has been shown to have a causal effect in the development of pre-eclampsia. While some previous studies have suggested that carbon monoxide from cigarette smoke may have a protective effect against preeclampsia, a recent study conducted by the Genetics of Pre-Eclampsia Consortium (GOPEC) in the United Kingdom found that smokers were five times more likely to develop pre-eclampsia.
Nicotine alone has been shown to be a teratogen which affects the autonomic nervous system, leading to increased susceptibility to hypoxia-induced brain damage.
Maternal anemia in which smoking has also been implicated is another factor associated with IH/BA. Smoking by expectant mothers causes a decrease in maternal nucleated red blood cells (NRBC), thereby reducing the amount of red blood cells available for oxygen transport.
The perinatal brain injury occurring as a result of birth asphyxia, manifesting within 48 hours of birth, is a form of hypoxic ischemic encephalopathy.
If tissue is not being perfused properly, it may feel cold and appear pale; if severe, hypoxia can result in cyanosis, a blue discoloration of the skin. If hypoxia is very severe, a tissue may eventually become gangrenous.
Extreme pain may also be felt at or around the site.
Perinatal asphyxia, neonatal asphyxia or birth asphyxia is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Hypoxic damage can occur to most of the infant's organs (heart, lungs, liver, gut, kidneys), but brain damage is of most concern and perhaps the least likely to quickly or completely heal. In more pronounced cases, an infant will survive, but with damage to the brain manifested as either mental, such as developmental delay or intellectual disability, or physical, such as spasticity.
It results most commonly from a drop in maternal blood pressure or some other substantial interference with blood flow to the infant's brain during delivery. This can occur due to inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. Perinatal asphyxia happens in 2 to 10 per 1000 newborns that are born at term, and more for those that are born prematurely. WHO estimates that 4 million neonatal deaths occur yearly due to birth asphyxia, representing 38% of deaths of children under 5 years of age.
Perinatal asphyxia can be the cause of hypoxic ischemic encephalopathy or intraventricular hemorrhage, especially in preterm births. An infant suffering severe perinatal asphyxia usually has poor color (cyanosis), perfusion, responsiveness, muscle tone, and respiratory effort, as reflected in a low 5 minute Apgar score. Extreme degrees of asphyxia can cause cardiac arrest and death. If resuscitation is successful, the infant is usually transferred to a neonatal intensive care unit.
There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.
In an acute context, hypoxemia can cause symptoms such as those in respiratory distress. These include breathlessness, an increased rate of breathing, use of the chest and abdominal muscles to breathe, and lip pursing.
Chronic hypoxemia may be compensated or uncompensated. The compensation may cause symptoms to be overlooked initially, however, further disease or a stress such as any increase in oxygen demand may finally unmask the existing hypoxemia. In a compensated state, blood vessels supplying less-ventilated areas of the lung may selectively contract, to redirect the blood to areas of the lungs which are better ventilated. However, in a chronic context, and if the lungs are not well ventilated generally, this mechanism can result in pulmonary hypertension, overloading the right ventricle of the heart and causing cor pulmonale and right sided heart failure. Polycythemia can also occur. In children, chronic hypoxemia may manifest as delayed growth, neurological development and motor development and decreased sleep quality with frequent sleep arousals.
Other symptoms of hypoxemia may include cyanosis, digital clubbing, and symptoms that may relate to the cause of the hypoxemia, including cough and hemoptysis.
Serious hypoxemia occurs (1) when the partial pressure of oxygen in blood is less than 60 mm Hg, (the beginning of the steep portion of the oxygen–haemoglobin dissociation curve, where a small decrease in the partial pressure of oxygen results in a large decrease in the oxygen content of the blood); or (2) when hemoglobin oxygen saturation is less than 90%. Severe hypoxia can lead to respiratory failure
Cerebral hypoxia is typically grouped into four categories depending on the severity and location of the brain's oxygen deprivation:
1. Diffuse cerebral hypoxia – A mild to moderate impairment of brain function due to low oxygen levels in the blood.
2. Focal cerebral ischemia – A stroke occurring in a localized area that can either be acute or transient. This may be due to a variety of medical conditions such as an aneurysm that causes a hemorrhagic stroke, or an occlusion occurring in the affected blood vessels due to a thrombus (thrombotic stroke) or embolus (embolic stroke). Focal cerebral ischemia constitutes a large majority of the clinical cases in stroke pathology with the infarct usually occurring in the middle cerebral artery (MCA).
3. Global cerebral ischemia – A complete stoppage of blood flow to the brain.
4. Cerebral infarction – A "stroke", caused by complete oxygen deprivation due to an interference in cerebral blood flow which affects multiple areas of the brain.
Cerebral hypoxia can also be classified by the cause of the reduced brain oxygen:
- Hypoxic hypoxia – Limited oxygen in the environment causes reduced brain function. Divers, aviators, mountain climbers, and fire fighters are all at risk for this kind of cerebral hypoxia. The term also includes oxygen deprivation due to obstructions in the lungs. Choking, strangulation, the crushing of the windpipe all cause this sort of hypoxia. Severe asthmatics may also experience symptoms of hypoxic hypoxia.
- Hypemic hypoxia – Reduced brain function is caused by inadequate oxygen in the blood despite adequate environmental oxygen. Anemia and carbon monoxide poisoning are common causes of hypemic hypoxia.
- Ischemic hypoxia ( or "stagnant hypoxia") – Reduced brain oxygen is caused by inadequate blood flow to the brain. Stroke, shock, cardiac arrest and heart attack may cause stagnant hypoxia. Ischemic hypoxia can also be created by pressure on the brain. Cerebral edema, brain hemorrhages and hydrocephalus exert pressure on brain tissue and impede their absorption of oxygen.
- Histotoxic hypoxia – Oxygen is present in brain tissue but cannot be metabolized by the brain tissue. Cyanide poisoning is a well-known example.
Details of the mechanism of damage from cerebral hypoxia, along with anoxic depolarization, can be found here: Mechanism of anoxic depolarization in the brain
A variety of conditions that physically limit airflow can lead to hypoxemia.
- Suffocation, including temporary interruption temporary cessation of breathing as in obstructive sleep apnea, or bedclothes may interfere with breathing in infants, a putative cause of SIDS.
- Structural deformities of the chest, such as scoliosis and kyphosis, which can restrict breathing and lead to hypoxia.
- Muscle weakness, which may limit the ability of the diaphragm, the primary muscle for drawing new air into lungs, to function. This may be a result of a congenital disease, such as motor neuron disease, or an acquired condition, such as fatigue in severe cases of COPD.
The most obvious sign that meconium has been passed during or before labor is the greenish or yellowish appearance of the amniotic fluid. The infant's skin, umbilical cord, or nailbeds may be stained green if the meconium was passed a considerable amount of time before birth. These symptoms alone do not necessarily indicate that the baby has inhaled in the fluid by gasping in utero or after birth. After birth, rapid or labored breathing, cyanosis, slow heartbeat, a barrel-shaped chest or low Apgar score are all signs of the syndrome. Inhalation can be confirmed by one or more tests such as using a stethoscope to listen for abnormal lung sounds (diffuse 'wet' crackles and rhonchi), performing blood gas tests to confirm a severe loss of lung function (respiratory acidosis as a consequence of hypercapnia), and using chest X-rays to look for patchy or streaked areas on the lungs. Infants who have inhaled meconium may develop respiratory distress syndrome often requiring ventilatory support. Complications of MAS include pneumothorax and persistent pulmonary hypertension of the newborn.
Swelling (especially in the hands and face) was originally considered an important sign for a diagnosis of pre-eclampsia. However, because swelling is a common occurrence in pregnancy, its utility as a distinguishing factor in pre-eclampsia is not high. Pitting edema (unusual swelling, particularly of the hands, feet, or face, notable by leaving an indentation when pressed on) can be significant, and should be reported to a health care provider.
In general, none of the signs of pre-eclampsia are specific, and even convulsions in pregnancy are more likely to have causes other than eclampsia in modern practice. Further, a symptom such as epigastric pain may be misinterpreted as heartburn. Diagnosis, therefore, depends on finding a coincidence of several pre-eclamptic features, the final proof being their regression after delivery.
Meconium aspiration syndrome (MAS) also known as neonatal aspiration of meconium is a medical condition affecting newborn infants. It occurs when meconium is present in their lungs during or before delivery. Meconium is the first stool of an infant, composed of materials ingested during the time the infant spends in the uterus.
Meconium is normally stored in the infant's intestines until after birth, but sometimes (often in response to fetal distress and hypoxia) it is expelled into the amniotic fluid prior to birth, or during labor. If the baby then inhales the contaminated fluid, respiratory problems may occur.
Apnea of prematurity is defined as cessation of breathing by a premature infant that lasts for more than 20 seconds and/or is accompanied by hypoxia or bradycardia. Apnea is traditionally classified as either "obstructive, central, or mixed". Obstructive apnea may occur when the infant's neck is hyperflexed or conversely, hyperextended. It may also occur due to low pharyngeal muscle tone or to inflammation of the soft tissues, which can block the flow of air though the pharynx and vocal cords. Central apnea occurs when there is a lack of respiratory effort. This may result from central nervous system immaturity, or from the effects of medications or illness. Many episodes of apnea of prematurity may start as either obstructive or central, but then involve elements of both, becoming mixed in nature.
Apnea of prematurity can be readily identified from other forms of infant apnea such as obstructive apnea, hypoventilation syndromes, breathing regulation issues during feeding, and reflux associated apnea with an infant pneumogram or infant apnea/sleep study.
Hypoxic hypoxia is a result of insufficient oxygen available to the lungs. A blocked airway, a drowning or a reduction in partial pressure (high altitude above 10,000 feet) are examples of how lungs can be deprived of oxygen. Some medical examples are abnormal pulmonary function or respiratory obstruction. Hypoxic hypoxia is seen in patients suffering from chronic obstructive pulmonary diseases (COPD), neuromuscular diseases or interstitial lung disease.
There are 2 major categories of IUGR: symmetrical and asymmetrical. Some conditions are associated with both symmetrical and asymmetrical growth restriction.
Pre-eclampsia (PE) is a disorder of pregnancy characterized by the onset of high blood pressure and often a significant amount of protein in the urine. The condition begins after 20 weeks of pregnancy. In severe disease there may be red blood cell breakdown, a low blood platelet count, impaired liver function, kidney dysfunction, swelling, shortness of breath due to fluid in the lungs, or visual disturbances. Pre-eclampsia increases the risk of poor outcomes for both the mother and the baby. If left untreated, it may result in seizures at which point it is known as eclampsia.
Risk factors for pre-eclampsia include obesity, prior hypertension, older age, and diabetes mellitus. It is also more frequent in a woman's first pregnancy and if she is carrying twins. The underlying mechanism involves abnormal formation of blood vessels in the placenta amongst other factors. Most cases are diagnosed before delivery. Rarely, pre-eclampsia may begin in the period after delivery. While historically both high blood pressure and protein in the urine were required to make the diagnosis, some definitions also include those with hypertension and any associated organ dysfunction. Blood pressure is defined as high when it is greater than 140 mmHg systolic or 90 mmHg diastolic at two separate times, more than four hours apart in a woman after twenty weeks of pregnancy. Pre-eclampsia is routinely screened for during prenatal care.
Recommendations for prevention include: aspirin in those at high risk, calcium supplementation in areas with low intake, and treatment of prior hypertension with medications. In those with pre-eclampsia delivery of the baby and placenta is an effective treatment. When delivery becomes recommended depends on how severe the pre-eclampsia and how far along in pregnancy a person is. Blood pressure medication, such as labetalol and methyldopa, may be used to improve the mother's condition before delivery. Magnesium sulfate may be used to prevent eclampsia in those with severe disease. Bedrest and salt intake have not been found to be useful for either treatment or prevention.
Pre-eclampsia affects 2–8% of pregnancies worldwide. Hypertensive disorders of pregnancy (which include pre-eclampsia) are one of the most common causes of death due to pregnancy. They resulted in 46,900 deaths in 2015. Pre-eclampsia usually occurs after 32 weeks; however, if it occurs earlier it is associated with worse outcomes. Women who have had pre-eclampsia are at increased risk of heart disease and stroke later in life. The word eclampsia is from the Greek term for lightning. The first known description of the condition was by Hippocrates in the 5th century BC.
Early symptoms of high-altitude cerebral edema (HACE) generally correspond with those of moderate to severe acute mountain sickness (AMS). Initial symptoms of HACE commonly include confusion, loss of consciousness, fever, ataxia, photophobia, rapid heart beat, lassitude, and an altered mental state. Sufferers generally attempt to cease physical activities, regardless of their necessity for survival. Severe headaches develop and sufferers lose the ability to sit up. Retinal venous dilation occurs in 59% of people with HACE. Rarer symptoms include brisk deep tendon reflexes, retinal hemorrhages, blurred vision, extension plantar reflexes, and ocular paralysis. Cranial nerve palsies occur in some unusual cases.
In the bestselling 1996 non-fiction book "Into Thin Air: A Personal Account of the Mt. Everest Disaster", Jon Krakauer describes the effects of HACE upon Dale Kruse, a forty-four-year-old dentist and one of the members of Scott Fischer's team:
‘Kruse was having an incredibly difficult time simply trying to dress himself. He put his climbing harness on inside out, threaded it through the fly of his wind suit, and failed to fasten the buckle; fortunately, Fisher and Neal Beidleman noticed the screwup before Kruse started to descend. "If he'd tried to rappel down the ropes like that," says Beidleman, "he would have immediately popped out of his harness and fallen to the bottom of the Lhotse Face."
‘"It was like I was very drunk," Kruse recollects. "I couldn't walk without stumbling, and completely lost the ability to think or speak. It was a really strange feeling. I'd have some word in my mind, but I couldn't figure out how to bring it to my lips. So Scott and Neal had to get me dressed and make sure my harness was on correctly, then Scott lowered me down the fixed ropes." By the time Kruse arrived in Base Camp, he says, "it was still another three or four days before I could walk from my tent to the mess tent without stumbling all over the place."’
Patients with HACE have an elevated white blood cell count, but otherwise their blood count and biochemistry are normal. If a lumbar puncture is performed, it will show normal cerebral spinal fluid and cell counts but an increase in pressure. In one study, CT scans of patients with HACE exhibited ventricle compression and low density in the cerebellum. Only a few autopsies have been performed on fatal cases of HACE; they showed swollen gyri, spongiosis of white matter, and compressed sulci. There was some variation between individuals, and the results may not be typical of HACE deaths.
Asymmetrical IUGR is more common (70%). In asymmetrical IUGR, there is restriction of weight followed by length. The head continues to grow at normal or near-normal rates (head sparing). A lack of subcutaneous fat leads to a thin and small body out of proportion with the liver. Normally at birth the brain of the fetus is 3 times the weight of its liver. In IUGR, It becomes 5-6 times. In these cases, the embryo/fetus has grown normally for the first two trimesters but encounters difficulties in the third, sometimes secondary to complications such as pre-eclampsia. Other symptoms than the disproportion include dry, peeling skin and an overly-thin umbilical cord. The baby is at increased risk of hypoxia and hypoglycaemia. This type of IUGR is most commonly caused by extrinsic factors that affect the fetus at later gestational ages. Specific causes include:
- Chronic high blood pressure
- Severe malnutrition
- Genetic mutations, Ehlers–Danlos syndrome
Disorders like congenital central hypoventilation syndrome (CCHS) and ROHHAD (rapid-onset obesity, hypothalamic dysfunction, hypoventilation, with autonomic dysregulation) are recognized as conditions that are associated with hypoventilation. CCHS may be a significant factor in some cases of sudden infant death syndrome (SIDS), often termed "cot death" or "crib death".
The opposite condition is hyperventilation (too much ventilation), resulting in low carbon dioxide levels (hypocapnia), rather than hypercapnia.
High-altitude cerebral edema (HACE) is a medical condition in which the brain swells with fluid because of the physiological effects of traveling to a high altitude. It generally appears in patients who have acute mountain sickness and involves disorientation, lethargy, and nausea among other symptoms. It occurs when the body fails to acclimatize while ascending to a high altitude.
It appears to be a vasogenic edema (fluid penetration of the blood–brain barrier), although cytotoxic edema (cellular retention of fluids) may play a role as well. Individuals with the condition must immediately descend to a lower altitude or coma and death can occur. Patients are usually given supplemental oxygen and dexamethasone as well.
HACE can be prevented by ascending to heights slowly to allow the body more time to acclimatize. Acetazolamide also helps prevent the condition. Untreated patients usually die within 48 hours. Those who receive treatment may take weeks to fully recover. It is a rare condition, occurring in less than one percent of people who ascend to . First described in 1913, little was known about the cause of the condition until MRI studies were performed in the 1990s.
This has a good prognosis, as it is reversible. Causes include hypoxia, meconium aspiration, and respiratory distress syndrome.
There are several pathologic conditions that can predispose a pregnancy to polyhydramnios. These include a maternal history of diabetes mellitus, Rh incompatibility between the fetus and mother, intrauterine infection, and multiple pregnancies.
During the pregnancy, certain clinical signs may suggest polyhydramnios. In the mother, the physician may observe increased abdominal size out of proportion for her weight gain and gestation age, uterine size that outpaces gestational age, shiny skin with stria (seen mostly in severe polyhydramnios), dyspnea, and chest heaviness. When examining the fetus, faint fetal heart sounds are also an important clinical sign of this condition.
Persistent fetal circulation (also called Persistent Pulmonary Hypertension of the Newborn, PPHN) is a condition caused by a failure in the systemic circulation and pulmonary circulation to convert from the antenatal circulation pattern to the "normal" pattern.
In a fetus, there is high pulmonary vascular resistance and low pulmonary blood flow as the fetus does not use the lungs for oxygen transfer. When the baby is born, the lungs are needed for oxygen transfer and need high blood flow which is encouraged by low pulmonary vascular resistance.
It can be associated with pulmonary hypertension. Because of this, the condition is also widely known as Persistent Pulmonary Hypertension of the Newborn (PPHN).
Inert gas asphyxiation is a form of asphyxiation which results from breathing a physiologically inert gas in the absence of oxygen, or a low amount of oxygen, rather than atmospheric air (which is largely composed of nitrogen and oxygen). Examples of physiologically inert gases, which have caused accidental or deliberate death by this mechanism, are: argon, helium, nitrogen and methane. The term "physiologically inert" is used to indicate a gas which has no toxic or anesthetic properties and does not act upon the heart or hemoglobin. Instead, the gas acts as a simple diluent to reduce oxygen concentration in inspired gas and blood to dangerously low levels, thereby eventually depriving all cells in the body of oxygen.
According to the U.S. Chemical Safety and Hazard Investigation Board, in humans, "breathing an oxygen deficient atmosphere can have serious and immediate effects, including unconsciousness after only one or two breaths. The exposed person has no warning and cannot sense that the oxygen level is too low." In the US, at least 80 people died due to accidental nitrogen asphyxiation between 1992 and 2002. Hazards with inert gases and the risks of asphyxiation are well established.
An occasional cause of accidental death in humans, inert gas asphyxia with gases including helium, nitrogen, methane, and argon, has been used as a suicide method. Inert gas asphyxia has been advocated by proponents of euthanasia, using a gas-retaining plastic hood device colloquially referred to as a suicide bag.
Nitrogen asphyxiation has been suggested by a number of lawmakers and other advocates as a more humane way to carry out capital punishment. In April 2015, the Oklahoma Governor Mary Fallin signed a bill authorizing nitrogen asphyxiation as an alternative execution method in cases where the state's preferred method of lethal injection was not available as an option.