Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Serious infestations and chronic attacks can cause anxiety, stress, and insomnia. Development of refractory delusional parasitosis is possible, as a person develops an overwhelming obsession with bed bugs.
Individual responses to bites vary, ranging from no visible effect (in about 20–70%), to small macular spots, to prominent wheals and bullae formations along with intense itching that may last several days. The bites often occur in a line. A central hemorrhagic spot may also occur due to the release of anticoagulants in the saliva.
Symptoms may not appear until some days after the bites have occurred. Reactions often become more brisk after multiple bites due to possible sensitization to the salivary proteins of the bed bug. The skin reaction usually occurs in the area of the bite which is most commonly the arms, shoulders and legs as they are more frequently exposed at night. Numerous bites may lead to an erythematous rash or urticaria.
The symptoms of little cherry disease in sweet and sour cherries varies greatly depending on cultivar, with respect to both the range and the severity of symptoms; some cultivars show signs of tolerance.
In infected trees of the commercially important cultivar Lambert, the fruit develops normally until about ten days before harvest, when maturation stops. At picking time, the cherries are 1/2–2/3 of the regular size, dull in color, with an angular pointed shape. The sugar and acid levels of the cherries are severely impacted, resulting in tasteless fruits, lacking both sweetness and flavor. Other cultivars show symptoms similar to those in Lambert, but usually less severe and more varied. Typically, dark-fruited cultivars show more severe fruit symptoms than cultivars with red or yellow fruit. The ability to recover is also dependent on cultivar, with some able to return to fruit sizes and coloring comparable to uninfected trees. The taste, however, never recovers.
Some sweet cherry cultivars display foliage symptoms, with the fruit crop less hidden by the canopy, and leaf symptoms, varying from a slight marginal up-curl of the leaves to marked reddening of leaf surfaces. The general vigor of infected trees may be impaired, though this is not always apparent. Diagnosis of the disease can be assisted by RT-PCR assays.
Other "Prunus" species may act as symptomless or tolerant carriers of the disease; especially cultivars of Japanese flowering cherry ("Prunus serrulata") have been implicated as such.
Swimmer’s itch or cercarial dermatitis, is a short-term immune reaction occurring in the skin of humans that have been infected by water-borne schistosomatidae. Symptoms, which include itchy, raised papules, commonly occur within hours of infection and do not generally last more than a week. It is common in freshwater, brackish and marine habitats worldwide. Incidence may be on the rise, although this may also be attributed to better monitoring. Nevertheless, the condition has been regarded as emerging infectious disease.
There are no permanent effects to people from this condition. Orally administered hydroxyzine, an antihistamine, is sometimes prescribed to treat swimmer's itch and similar dermal allergic reactions. In addition, bathing in oatmeal, baking soda, or Epsom salts can also provide relief of symptoms.
Many species of arthropods (insects, arachnids and others) regularly or occasionally bite or sting human beings. Insect saliva contains anticoagulants and enzymes that cause local irritation and allergic reactions. Insect venoms can be delivered by their stingers, which often are modified ovipositors, or by their mouthparts. Insect, spider and scorpion venom can cause serious injury or death. Dipterans account for the majority of insect bites, while hymenopterans account for the majority of stings. Among arachnids spider bites are the most common. Arthropods bite or sting humans for a number of reasons including feeding or defense. Arthropods are major vectors of human disease, with the pathogens typically transmitted by bites.
There are two different manifestations of rainscald: the winter form, which is more severe due to the longer coat of the horse, and the summer form, which is less severe. Horses are usually affected on the back, head, and neck, where insects commonly bite, and the legs, which are commonly infected if the horse is kept in moist footing. Initially, the horse will display a matted coat and bumps which will then progress to crusty scabs and lesions. The animal may also be itchy and display signs of discomfort.
The disease is often misdiagnosed as "Blastomyces dermatitidis" or "Paracoccidiodes brasiliensis" due to its similar morphology.
The disease is endemic in rural regions in South America and Central America.
Infection most commonly develops after minor scratches or insect bites, but many patients cannot recall any skin trauma. Human-to-human transmission does not occur, and the disease is only acquired from the environment. The appearances are of a chronic keloidal nodular lesions occur on the face, ears, or extremities.
Diagnosis of Lobo's disease is made by taking a sample of the infected skin (a skin biopsy) and examining it under the microscope. "Lacazia loboi" is characterized by long chains of spherical cells interconnected by tubules. The cells appear to be yeast-like with a diameter of 5 to 12 μm. Attempts to culture "L. loboi" have so far been unsuccessful.
How myiasis affects the human body depends on where the larvae are located. Larvae may infect dead, necrotic (prematurely dying) or living tissue in various sites: the skin, eyes, ears, stomach and intestinal tract, or in genitourinary sites. They may invade open wounds and lesions or unbroken skin. Some enter the body through the nose or ears. Larvae or eggs can reach the stomach or intestines if they are swallowed with food and cause gastric or intestinal myiasis.
Several different presentations of myiasis and their symptoms:
Muscardine is a disease of insects. It is caused by many species of entomopathogenic fungus. Many muscardines are known for affecting silkworms. Muscardine may also be called calcino.
While studying muscardine in silkworms in the 19th century, Agostino Bassi found that the causal agent was a fungus. This was the first demonstration of the germ theory of disease, the first time a microorganism was recognized as an animal pathogen.
There are many types of muscardine. They are often named for the color of the conidial layer each fungus leaves on its host.
Nosocomial myiasis is myiasis acquired in a hospital setting. It is quite frequent, as patients with open wounds or sores can be infested if flies are present. To prevent nosocomial myiasis, hospital rooms must be kept free of flies.
In rabbits of the genus "Sylvilagus" (cottontail rabbits) living in the Americas, myxomatosis causes only localized skin tumors, but the European rabbit ("Oryctolagus cuniculus") is more severely affected. At first, normally the disease is visible by lumps (myxomata) and puffiness around the head and genitals. It may progress to acute conjunctivitis and possibly blindness; however, this also may be the first visible symptom of the disease. The rabbits become listless, lose appetite, and develop a fever. Secondary bacterial infections occur in most cases, which cause pneumonia and purulent inflammation of the lungs. In cases where the rabbit has little or no resistance, death may take place rapidly, often in as little as 48 hours; most cases result in death within 14 days. Often the symptoms like blindness make the infected rabbit more vulnerable to predators.
Rainscald (also known as "dermatophilosis", "rain rot" and "streptothricosis") is a common skin disease in horses that is caused by the bacterium "Dermatophilus congolensis". This is the same organism that causes Mud fever in horses. This disease is very common in cows, sheep and goats and is also found occasionally in cats, dogs, and humans. D. congolensis is a gram-positive bacterium that is thought to originate from the soil. It commonly causes disease in moist tropical areas, but can also be found in wet northern environments. Moisture and high temperatures facilitate the dispersal and penetration of zoospores into the skin, contributing to the spread of the disease.
Ticks, biting flies, and contact with other infected animals also causes the spread of rainscald. Once in the skin, the bacteria cause inflammation of the skin as well as the typical symptoms associated with rainscald.
Little cherry disease or LChD, sometimes referred to as little cherry, K & S little cherry or sour cherry decline, is a viral infectious disease that affects cherry trees, most notably sweet cherries ("Prunus avium") and sour cherries ("Prunus cerasus").
Little cherry disease should not be confused with cherry buckskin disease, which is caused by Phytoplasma.
Note that both diseases are among the diseases referred to as cherry decline.
Leaf curl is a plant disease characterized by curling of leaves, and caused by a fungus, genus "Taphrina", or virus, especially genus "Begomovirus" of the family "Geminiviridae". One of the most notable types is peach leaf curl, caused by the fungus "Taphrina deformans", which infects peach, nectarine, and almond trees. "T. deformans" is found in the United States, Europe, Asia, Africa, Australia, and New Zealand. It was first introduced in America in 1852 and has now spread all over the country.
In general, specific laboratory tests are not available to rapidly diagnose tick-borne diseases. Due to their seriousness, antibiotic treatment is often justified based on clinical presentation alone.
Tropical diseases are diseases that are prevalent in or unique to tropical and subtropical regions. The diseases are less prevalent in temperate climates, due in part to the occurrence of a cold season, which controls the insect population by forcing hibernation. However, many were present in northern Europe and northern America in the 17th and 18th centuries before modern understanding of disease causation. The initial impetus for tropical medicine was to protect the health of colonialists, notably in India under the British Raj. Insects such as mosquitoes and flies are by far the most common disease carrier, or vector. These insects may carry a parasite, bacterium or virus that is infectious to humans and animals. Most often disease is transmitted by an insect "bite", which causes transmission of the infectious agent through subcutaneous blood exchange. Vaccines are not available for most of the diseases listed here, and many do not have cures.
Human exploration of tropical rainforests, deforestation, rising immigration and increased international air travel and other tourism to tropical regions has led to an increased incidence of such diseases.
Feeding bites have characteristic patterns and symptoms, a function of the feeding habits of the offending pest and the chemistry of its saliva.
Dead arm, sometimes grape canker, is a disease of grapes caused by a deep-seated wood rot of the arms or trunk of the grapevine. As the disease progresses over several years, one or more arms may die, hence the name "dead arm". Eventually the whole vine will die. In the 1970s, dead-arm was identified as really being two diseases, caused by two different fungi, "Eutypa lata" and "Phomopsis viticola" (syn. "Cryptosporella viticola").
The histomorphologic appearance of insect bites is usually characterized by a wedge-shaped superficial dermal perivascular infiltrate consisting of abundant lymphocytes and scattered eosinophils. This appearance is non-specific, i.e. it may be seen in a number of conditions including:
- Drug reactions,
- Urticarial reactions,
- Prevesicular early stage of bullous pemphigoid, and
- HIV related dermatoses.
Tick-borne diseases, which afflict humans and other animals, are caused by infectious agents transmitted by tick bites. Tick-borne illnesses are caused by infection with a variety of pathogens, including rickettsia and other types of bacteria, viruses, and protozoa. Because individual ticks can harbor more than one disease-causing agent, patients can be infected with more than one pathogen at the same time, compounding the difficulty in diagnosis and treatment. As of 2016, 16 tick-borne diseases of humans are known (four discovered since 2013).
As the incidence of tick-borne illnesses increases and the geographic areas in which they are found expand, health workers increasingly must be able to distinguish the diverse, and often overlapping, clinical presentations of these diseases.
The first visible sign of a beech scale insect infestation is a woolly, white, waxy covering that the insect secretes. This sign can be observed covering small areas or most of the tree. The amount of waxy material observed depends on the population of the beech scale insect on that tree. The "Neonectria" fungi also show signs of its presence. An early sign is what looks like a bleeding spot on the tree. A reddish-brown fluid will ooze from the wound site, giving it this appearance. Later, perithecia will form around the dead spot, which is another sign of the disease.
Symptoms of beech bark disease can be observed in the foliage and on the bole of the tree. Foliage may become small, sparse and yellowed. Trees that display a thin, weak crown may persist for several years but may also die without displaying any symptoms. Noticeable symptoms on the bole are the cracking of the bark, the formation of cankers, and beech snap. Beech snap is a result of the fungi and insect weakening the wood, which makes it susceptible to being blown over by wind.
Beech bark disease is a disease that causes mortality and defects in beech trees in the eastern United States and Europe. In North America, the disease occurs after extensive bark invasion by the beech scale insect, "Cryptococcus fagisuga". Through a presently unknown mechanism, excessive feeding by this insect causes two different fungi ("Neonectria faginata" (previously "Nectria coccinea var. faginata") and "Neonectria ditissima" (previously "Nectria galligena")) to produce annual cankers on the bark of the tree. The continuous formation of lesions around the tree eventually girdles it, resulting in canopy death. In Europe, "N. coccinea" is the primary fungus causing the infection. Infection in European trees occurs in the same manner as it does in North American trees. Though the disease still appears in Europe, it is less serious today than it once was.
Cyclaneusma (needle cast) is a fungal disease that is a part of the phylum, Ascomycota. It infects plants that are of pine classification. After infection by "Cyclaneusma", most pines do not display symptoms until 10 months after the initial infection. Symptoms include needles developing yellow spots, horizontal brown bands around the needles, swelling of needles, and off-white fruiting bodies formed on infected needles. Because "Cyclaneusma" is an ascomycete it produces two spore types, an asexual (conidiomata) and sexual (ascomycota) spore. Controlling "Cyclaneusma" has presented a challenge as the disease can survive on both living and dead needles during the winter months. Effective management methods include planting new pines in non-shaded, well drainable soil as well as spraying fungicide. "Cyclaneusma" Needle Cast is an important fungal disease because it directly impacts the commercial value of decorative pines as well as lumber.
Swimmer’s itch probably has been around as long as humans. The condition was known to exist as early as the 1800s, but it was not until 1928 that a biologist found that the dermatitis was caused by the larval stage of a group of flatworm parasites in the family Schistosomatidae. The genera most commonly associated with swimmer’s itch in humans are Trichobilharzia and Gigantobilharzia. It can also be caused by schistosome parasites of non-avian vertebrates, such as "Schistosomatium douthitti", which infects snails and rodents. Other taxa reported to cause the reaction include "Bilharziella polonica" and "Schistosoma bovis". In marine habitats, especially along the coasts, swimmer’s itch can occur as well.
These parasites use both freshwater snails and vertebrates as hosts in their parasitic life cycles as follows:
1. Once a schistosome egg is immersed in water, a short-lived, non-feeding, free-living stage known as the miracidium emerges. The miracidium uses cilia to follow chemical and physical cues thought to increase its chances of finding the first intermediate host in its life cycle, a freshwater snail.
2. After infecting a snail, it develops into a mother sporocyst, which in turn undergoes asexual reproduction, yielding large numbers of daughter sporocysts, which asexually produce another short-lived, free-living stage, the cercaria.
3. Cercariae use a tail-like appendage (often forked in genera causing swimmer’s itch) to swim to the surface of the water; and use various physical and chemical cue in order to locate the next and final (definitive) host in the life cycle, a bird. These larvae can accidentally come into contact with the skin of a swimmer. The cercaria penetrates the skin and dies in the skin immediately. The cercariae cannot infect humans, but they cause an inflammatory immune reaction. This reaction causes initially mildly itchy spots on the skin. Within hours, these spots become raised papules which are intensely itchy. Each papule corresponds to the penetration site of a single parasite.
4. After locating a bird, the parasite penetrates through the skin (usually the feet), dropping the forked tail in the process. Inside the circulatory system, the immature worms (schistosomula) develop into mature male and female worms, mate and migrate through the host’s circulatory system (or nervous system in case of "T. regenti") to the final location (veins feeding the gastrointestinal tract) within the host body. There they lay eggs in the small veins in the intestinal mucosa from which they make their way into the lumen of the gut, and are dumped into the water when the bird defecates. One European species, "Trichobilharzia regenti", instead infects the bird host’s nasal tissues and larvae hatch from the eggs directly in the tissue during drinking/feeding of the infected birds.