Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hyperthymesia is the condition of possessing an extremely detailed autobiographical memory. People with hyperthymesia remember an abnormally vast number of their life experiences.
American neurobiologists Elizabeth Parker, Larry Cahill, and James McGaugh (2006) identified two defining characteristics of hyperthymesia: spending an excessive amount of time thinking about one's past, and displaying an extraordinary ability to recall specific events from one's past. The word "hyperthymesia" derives from Ancient Greek: "hyper-" ("excessive") and "thymesis" ("remembering").
Individuals with hyperthymesia can recall almost every day of their lives in near perfect detail, as well as public events that hold some personal significance to them. Those affected describe their memories as uncontrollable associations; when they encounter a date, they "see" a vivid depiction of that day in their heads. Recollection occurs without hesitation or conscious effort.
It is important to draw a distinction between those with hyperthymesia and those with other forms of exceptional memory, who generally use mnemonic or similar rehearsal strategies to memorize long strings of subjective information. Memories recalled by hyperthymestic individuals tend to be personal, autobiographical accounts of both significant and mundane events in their lives. This extensive and highly unusual memory does not derive from the use of mnemonic strategies; it is encoded involuntarily and retrieved automatically. Despite being able to remember the day of the week on which a particular date fell, hyperthymestics are not calendrical calculators like some people with autism or savant syndrome. Rather, hyperthymestic recall tends to be constrained to a person's lifetime and is believed to be a subconscious process.
Although hyperthymestics are not necessarily autistic, and likewise savants do not necessarily memorize autobiographical information, certain similarities exist between the two conditions. Like autistic savants, some individuals with hyperthymesia may also have an unusual and obsessive interest in dates. Russian psychologist Alexander Luria documented the famous case of mnemonist Solomon Shereshevsky, who was quite different from the first documented hyperthymestic known as AJ (real name Jill Price) in that Shereshevskii could memorize virtually unlimited amounts of information deliberately, while AJ could not – she could only remember autobiographical information (and events she had personally seen on the news or read about). In fact, she was not very good at memorizing anything at all, according to the study published in "Neurocase". Hyperthymestic individuals appear to have poorer than average memory for arbitrary information. Another striking parallel drawn between the two cases was that Shereshevsky exemplified an interesting case of synesthesia and it has been suggested that superior autobiographical memory is intimately tied to time-space synaesthesia.
Spatial disorientation, spatial unawareness is the inability of a person to correctly determine his/her body position in space. This phenomenon refers especially to aircraft pilots and underwater divers, but also can be induced in normal conditions—chemically or physically ("e.g.," by blindfolding). In aviation, the term means the inability to correctly interpret aircraft attitude, altitude or airspeed, in relation to the ground or point of reference, especially after a reference point ("e.g.," the horizon) has been lost. Spatial disorientation is a condition in which an aircraft pilot's perception of direction does not agree with reality. While it can be brought on by disturbances or disease within the vestibular system, it is more typically a temporary condition resulting from flight into poor weather conditions with low or no visibility. Under these conditions the pilot may be deprived of an external visual horizon, which is critical to maintaining a correct sense of up and down while flying.
A pilot who enters such conditions will quickly lose spatial orientation if there has been no training in flying with reference to instruments. Approximately 80% of the private pilots in the United States do not have an instrument rating, and therefore are prohibited from flying in conditions where instrument skills are required. Not all pilots abide by this rule and approximately 40% of the NTSB fatal general aviation accident reports list "continuation of flight into conditions for which the pilot was not qualified" as a cause.
Symptoms may vary according to the disorder's type and subtype present. SPD can affect one sense or multiple senses. While many people can present one or two symptoms, sensory processing disorder has to have a clear functional impact on the person's life.
Unlike ataxias of cerebellar origin, Bruns apraxia exhibits many frontal lobe ataxia characteristics, with some or all present.
- Difficulty in initiating movement
- Poor truncal mobility
- Falls due to minor balance disturbances
- Greatly hindered postural responses
- Characteristic magnetic gait, the inability to raise one's foot off of the floor.
- Wide base, poor balance control when in stance
- Short stride
- En bloc turns
Often patients with frontal lobe ataxia may experience minute cognitive changes that accompany the gait disturbances, such as frontal dementia and presentation of frontal release signs (Plantar reflex). Urinary incontinence may also be present.
Bruns apraxia can be distinguished from Parkinsonian ataxia and cerebellar ataxia in a number of ways. Patients typically afflicted with Parkinsonian ataxia typically have irregular arm swing, a symptom not typically present in frontal ataxia. Walking stride in cerebellar ataxia varies dramatically, accompanied by erratic foot placement and sudden, uncontrolled lurching, not generally characteristic of Bruns apraxia.
Sensory-based motor disorder shows motor output that is disorganized as a result of incorrect processing of sensory information affecting postural control challenges, resulting in postural disorder, or developmental coordination disorder.
The SBMD subtypes are:
1. Dyspraxia
2. Postural disorder
Sensory dysfunction disorder is a reported neurological disorder of information processing, characterized by difficulty in understanding and responding appropriately to sensory inputs. Sensory dysfunction disorder is not recognized by the American Medical Association. "Sensory processing (SP) difficulties have been reported in as many as 95% of children with autism, however, empirical research examining the existence of specific patterns of SP difficulties within this population is scarce."
The brain receives messages from the body's sensory systems, which informs the brain of what is going on around and to a person's body. If one or more of these systems become overstimulated, it may result in what is known as Sensory Dysfunction Disorder. An example of a response to overstimulation is expressed by A. Jean Ayres, in "Sensory Integration and the Child: Understanding Hidden Sensory Challenges". She writes, "When the flow of sensations is disorganized, life can be like a rush-hour traffic jam” (p. 289). The following sensory systems are broken down into individual categories to better understand the impact a sensitivity can have on an individual.
Aprosodia is a neurological condition characterized by the inability of a person to properly convey or interpret emotional prosody. Prosody in language refers to the ranges of rhythm, pitch, stress, intonation, etc. These neurological deficits can be the result of damage of some form to the non-dominant hemisphere areas of language production. The prevalence of aprosodias in individuals is currently unknown, as testing for aprosodia secondary to other brain injury is only a recent occurrence.
The tactile system is the sense of touch. Someone with Sensory Dysfunction Disorder may have symptoms of not being able to process any form of physical connection. Conversely, a person may need to have some sort of physical connection to soothe an anxiety he or she is experiencing.
Diagnosis consists of a variety of tests, including but not limited to:
- Measurement of orthostatic blood pressure
- Coordination
- rapid, alternating movements
- stroking of heel from along the opposite shin from knee to ankle
- finger-to-nose testing.
- Primary sensory modalities are examined with the following methods, searching for focal sensory loss, graded distal sensory loss, or levels of decreased sensation, hyperesthesia or dysesthesia.
- light touch
- pin-prick
- temperature
- position
- vibration
- Focused gait examination, which examines stationary position and walking abnormalities. Walking generally exposes any faults within the complex neurological communication between systems as weight is shifted from one foot to the other.
Cyberchondria, otherwise known as 'compucondria', is the unfounded escalation of concerns about common symptomology based on review of search results and literature online. Articles in popular media position cyberchondria anywhere from temporary neurotic excess to adjunct hypochondria. Cyberchondria is a growing concern among many healthcare practitioners as patients can now research any and all symptoms of a rare disease, illness or condition, and manifest a state of medical anxiety.
Amblyaudia (amblyos- blunt; audia-hearing) is a term coined by Dr. Deborah Moncrieff from the University of Pittsburgh to characterize a specific pattern of performance from dichotic listening tests. Dichotic listening tests are widely used to assess individuals for binaural integration, a type of auditory processing skill. During the tests, individuals are asked to identify different words presented simultaneously to the two ears. Normal listeners can identify the words fairly well and show a small difference between the two ears with one ear slightly dominant over the other. For the majority of listeners, this small difference is referred to as a "right-ear advantage" because their right ear performs slightly better than their left ear. But some normal individuals produce a "left-ear advantage" during dichotic tests and others perform at equal levels in the two ears. Amblyaudia is diagnosed when the scores from the two ears are significantly different with the individual's dominant ear score much higher than the score in the non-dominant ear
Researchers interested in understanding the neurophysiological underpinnings of amblyaudia consider it to be a brain based hearing disorder that may be inherited or that may result from auditory deprivation during critical periods of brain development. Individuals with amblyaudia have normal hearing sensitivity (in other words they hear soft sounds) but have difficulty hearing in noisy environments like restaurants or classrooms. Even in quiet environments, individuals with amblyaudia may fail to understand what they are hearing, especially if the information is new or complicated. Amblyaudia can be conceptualized as the auditory analog of the better known central visual disorder amblyopia. The term “lazy ear” has been used to describe amblyaudia although it is currently not known whether it stems from deficits in the auditory periphery (middle ear or cochlea) or from other parts of the auditory system in the brain, or both. A characteristic of amblyaudia is suppression of activity in the non-dominant auditory pathway by activity in the dominant pathway which may be genetically determined and which could also be exacerbated by conditions throughout early development.
Dysmetria () refers to a lack of coordination of movement typified by the undershoot or overshoot of intended position with the hand, arm, leg, or eye. It is a type of ataxia. It is sometimes described as an inability to judge distance or scale.
Hypermetria and hypometria refer, respectively, to overshooting and undershooting the intended position.
Unilateral hearing loss (UHL) or single-sided deafness (SSD) is a type of hearing impairment where there is normal hearing in one ear and impaired hearing in the other ear.
Auditory processing disorder (APD), also known as central auditory processing disorder (CAPD), is an umbrella term for a variety of disorders that affect the way the brain processes auditory information. Individuals with APD usually have normal structure and function of the outer, middle and inner ear (peripheral hearing). However, they cannot process the information they hear in the same way as others do, which leads to difficulties in recognizing and interpreting sounds, especially the sounds composing speech. It is thought that these difficulties arise from dysfunction in the central nervous system.
The American Academy of Audiology notes that APD is diagnosed by difficulties in one or more auditory processes known to reflect the function of the central auditory nervous system.
APD can affect both children and adults, although the actual prevalence is currently unknown. It has been suggested that males are twice as likely to be affected by the disorder as females, but there are no good epidemiological studies.
Partial Anterior Circulation Infarct (PACI) is a type of cerebral infarction affecting part of the anterior circulation supplying one side of the brain.
Partial Anterior Circulation Stroke Syndrome (PACS) refers to the symptoms of a patient who clinically appears to have suffered from a partial anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed by any one of the following
- 2 out of 3 features of
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Homonymous hemianopia
- Motor and Sensory Defects (>2/3 of face, arm, leg)
- Higher dysfunction alone
- Partial Motor or Sensory Defect
If all of the above symptoms are present, a Total Anterior Circulation Infarct is more likely.
For more information, see stroke.
A Total Anterior Circulation Infarct (TACI) is a type of cerebral infarction affecting the entire anterior circulation supplying one side of the brain.
Total Anterior Circulation Stroke Syndrome (TACS) refers to the symptoms of a patient who clinically appears to have suffered from a total anterior circulation infarct, but who has not yet had any diagnostic imaging (e.g. CT Scan) to confirm the diagnosis.
It is diagnosed when it causes all 3 of the following symptoms:
- Higher dysfunction
- Dysphasia
- Visuospatial disturbances
- Decreased level of consciousness
- Homonymous hemianopia
- Motor and Sensory Defects (≥2/3 of face, arm, leg)
For more information, see stroke.
Patients with unilateral hearing loss have difficulty in
- hearing conversation on their impaired side
- localizing sound
- understanding speech in the presence of background noise.
- interpersonal and social relations
- difficulty concentrating in large, open environments
In quiet conditions, speech discrimination is no worse than normal hearing in those with partial deafness; however, in noisy environments speech discrimination is almost always severe.
Ocular dysmetria is a form of dysmetria that involves the constant under- or over-shooting of the eyes when attempting to focus gaze on something.
Ocular dysmetria indicates lesions in the cerebellum, which is the brain region responsible for coordinating movement. It is a symptom of several neurological conditions including multiple sclerosis.
It is a condition that can cause symptoms similar to sea sickness.
Source of information: Mult-sclerosis.org
Agnosia is the inability to recognize certain objects, persons or sounds. Agnosia is typically caused by damage to the brain (most commonly in the occipital or parietal lobes) or from a neurological disorder. Treatments vary depending on the location and cause of the damage. Recovery is possible depending on the severity of the disorder and the severity of the damage to the brain. Many more specific types of agnosia diagnoses exist, including: associative visual agnosia, astereognosis, auditory agnosia, auditory verbal agnosia, prosopagnosia, simultanagnosia, topographical disorientation, visual agnosia etc.
Patients with simultanagnosia, a component of Bálint's syndrome, have a restricted spatial window of visual attention and cannot see more than one object at a time in a scene that contains more than one object. For instance, if presented with an image of a table containing both food and various utensils, a patient will report seeing only one item, such as a spoon. If the patient's attention is redirected to another object in the scene, such as a glass, the patient will report that they see the glass but no longer see the spoon. As a result of this impairment, simultanagnosic patients often fail to comprehend the overall meaning of a scene.
In addition, patients note that one stationary object may spontaneously disappear from view as they become aware of another object in the scene.
Simultanagnosic patients often exhibit a phenomenon known as "local capture" where they only identify the local elements of stimuli containing local and global features. However, recent studies have demonstrated that implicit processing of the global structure can occur. With the appropriate stimulus conditions, explicit processing of the global form may occur. For example, a study performed with Navon hierarchical letters, which are large letters composed of smaller ones, revealed that the use of smaller and denser Navon letters biased the patient towards global processing.
Simultanagnosia (or simultagnosia) is a rare neurological disorder characterized by the inability of an individual to perceive more than a single object at a time. This type of visual attention problem is one of three major components (the others being optic ataxia and optic apraxia) of Bálint's syndrome, an uncommon and incompletely understood variety of severe neuropsychological impairments involving space representation (visuospatial processing). The term "simultanagnosia" was first coined in 1924 by Wolpert to describe a condition where the affected individual could see individual details of a complex scene but failed to grasp the overall meaning of the image.
Simultanagnosia can be divided into two different categories: dorsal and ventral. Ventral occipito-temporal lesions cause a mild form of the disorder, while dorsal occipito-parietal lesions cause a more severe form of the disorder.
Bhaskar–Jagannathan has symptoms such as long fingers, thin fingers, poor balance, incoordination, high levels of amino acids in urine, cataracts during infancy, and ataxia. Ataxia, which is a neurological sign and symptom made up of gross incoordination of muscle movements and is a specific clinical manifestation
Auditory neuropathy (AN) is a variety of hearing loss in which the outer hair cells within the cochlea are present and functional, but sound information is not faithfully transmitted to the auditory nerve and brain properly. Also known as auditory neuropathy/auditory dys-synchrony (AN/AD) or auditory neuropathy spectrum disorder (ANSD).
A neuropathy usually refers to a disease of the peripheral nerve or nerves, but the auditory nerve itself is not always affected in auditory neuropathy spectrum disorders.
Children with amblyaudia experience difficulties in speech perception, particularly in noisy environments, sound localization, and binaural unmasking (using interaural cues to hear better in noise) despite having normal hearing sensitivity (as indexed through pure tone audiometry). These symptoms may lead to difficulty attending to auditory information causing many to speculate that language acquisition and academic achievement may be deleteriously affected in children with amblyaudia. A significant deficit in a child's ability to use and comprehend expressive language may be seen in children who lacked auditory stimulation throughout the critical periods of auditory system development. A child suffering from amblyaudia may have trouble in appropriate vocabulary comprehension and production and the use of past, present and future tenses. Amblyaudia has been diagnosed in many children with reported difficulties understanding and learning from listening and adjudicated adolescents are at a significantly high risk for amblyaudia (Moncrieff, et al., 2013, Seminars in Hearing).