Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In this situation the testes are abnormal, atrophic, or absent, and sperm production severely disturbed to absent. FSH levels tend to be elevated (hypergonadotropic) as the feedback loop is interrupted (lack of feedback inhibition on FSH). The condition is seen in 49–93% of men with azoospermia. Testicular failure includes absence of failure production as well as low production and maturation arrest during the process of spermatogenesis.
Causes for testicular failure include congenital issues such as in certain genetic conditions (e.g. Klinefelter syndrome), some cases of cryptorchidism or Sertoli cell-only syndrome as well as acquired conditions by infection (orchitis), surgery (trauma, cancer), radiation, or other causes. Mast cells releasing inflammatory mediators appear to directly suppress sperm motility in a potentially reversible manner, and may be a common pathophysiological mechanism for many causes leading to inflammation. Testicular azoospermia is a kind of non-obstructive azoospermia.
Generally, men with unexplained hypergonadotropic azoospermia need to undergo a chromosomal evaluation.
The history should include prior testicular or penile insults (torsion, cryptorchidism, trauma), infections (mumps orchitis, epididymitis), environmental factors, excessive heat, radiation, medications, and drug use (anabolic steroids, alcohol, smoking).
Sexual habits, frequency and timing of intercourse, use of lubricants, and each partner's previous fertility experiences are important.
Loss of libido and headaches or visual disturbances may indicate a pituitary tumor.
The past medical or surgical history may reveal thyroid or liver disease (abnormalities of spermatogenesis), diabetic neuropathy (retrograde ejaculation), radical pelvic or retroperitoneal surgery (absent seminal emission secondary to sympathetic nerve injury), or hernia repair (damage to the vas deferens or testicular blood supply).
A family history may reveal genetic problems.
The diagnosis of infertility begins with a medical history and physical exam by a physician, physician assistant, or nurse practitioner. Typically two separate semen analyses will be required. The provider may order blood tests to look for hormone imbalances, medical conditions, or genetic issues.
Pretesticular azoospermia is characterized by inadequate stimulation of otherwise normal testicles and genital tract. Typically, follicle-stimulating hormone (FSH) levels are low (hypogonadotropic) commensurate with inadequate stimulation of the testes to produce sperm. Examples include hypopituitarism (for various causes), hyperprolactinemia, and exogenous FSH suppression by testosterone. Chemotherapy may suppress spermatogenesis. Pretesticular azoospermia is seen in about 2% of azoospermia. Pretesticular azoospermia is a kind of non-obstructive azoospermia.
Post-testicular factors decrease male fertility due to conditions that affect the male genital system after testicular sperm production and include defects of the genital tract as well as problems in ejaculation:
- Vas deferens obstruction
- Lack of Vas deferens, often related to genetic markers for Cystic Fibrosis
- Infection, e.g. prostatitis
- Ejaculatory duct obstruction
Terms oligospermia and oligozoospermia refer to semen with a low concentration of sperm and is a common finding in male infertility. Often semen with a decreased sperm concentration may also show significant abnormalities in sperm morphology and motility (technically oligoasthenoteratozoospermia). There has been interest in replacing the descriptive terms used in semen analysis with more quantitative information.
Sertoli cell only syndrome is likely multifactorial, and characterized by severely reduced or absent spermatogenesis despite the presence of both Sertoli and Leydig cells. A substantial subset of men with this uncommon syndrome have microdeletions in the Yq11 region of the Y chromosome, an area known as the AZF (azoospermia factor) region. Generally speaking, testosterone and LH levels are normal, but due to lack of inhibin, FSH levels are increased.
The Sertoli cell-only syndrome patients normally have normal secondary male features and have normal- or small-sized testes.
Aside from the effect on fertility globozoospermia is symptomless. People with globozoospermia have normal physical and mental development, normal clinical features and normal hormonal profile.
About 10–15% of human couples are infertile, unable to conceive. In approximately in half of these cases, the underlying cause is related to the male. The underlying causative factors in the male infertility can be attributed to environmental toxins, systemic disorders such as, hypothalamic–pituitary disease, testicular cancers and germ-cell aplasia. Genetic factors including aneuploidies and single-gene mutations are also contributed to the male infertility. Patients suffering from nonobstructive azoospermia or oligozoospermia show microdeletions in the long arm of the Y chromosome and/or chromosomal abnormalities, each with the respective frequency of 9.7% and 13%. A large percentage of human male infertility is estimated to be caused by mutations in genes involved in primary or secondary spermatogenesis and sperm quality and function. Single-gene defects are the focus of most research carried out in this field.
NR5A1 mutations are associated with male infertility, suggesting the possibility that these mutations cause the infertility. However, it is possible that these mutations individually have no major effect and only contribute to the male infertility by collaboration with other contributors such as environmental factors and other genomics variants. Vice versa, existence of the other alleles could reduce the phenotypic effects of impaired NR5A1 proteins and attenuate the expression of abnormal phenotypes and manifest male infertility solely.
Infertility is the inability of a person, animal or plant to reproduce by natural means. It is usually not the natural state of a healthy adult, except notably among certain eusocial species (mostly haplodiploid insects).
In humans, infertility is the inability to become pregnant or carry a pregnancy to full term. There are many causes of infertility, including some that medical intervention can treat. Estimates from 1997 suggest that worldwide about five percent of all hetersexual couples have an unresolved problem with infertility. Many more couples, however, experience involuntary childlessness for at least one year: estimates range from 12% to 28%." 20-30% of infertility cases are due to male infertility, 20-35% are due to female infertility, and 25-40% are due to combined problems in both parts. In 10-20% of cases, no cause is found. The most common cause of female infertility is ovulatory problems which generally manifest themselves by sparse or absent menstrual periods. Male infertility is most commonly due to deficiencies in the semen, and semen quality is used as a surrogate measure of male fecundity.
Women who are fertile experience a natural period of fertility before and during ovulation, and they are naturally infertile for the rest of the menstrual cycle. Fertility awareness methods are used to discern when these changes occur by tracking changes in cervical mucus or basal body temperature.
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a severe neurodegenerative syndrome that is associated with a particular mutation of the androgen receptor's polyglutamine tract called a trinucleotide repeat expansion. SBMA results when the length of the polyglutamine tract exceeds 40 repetitions.
Although technically a variant of MAIS, SBMA's presentation is not typical of androgen insensitivity; symptoms do not occur until adulthood and include neuromuscular defects as well as signs of androgen inaction. Neuromuscular symptoms include progressive proximal muscle weakness, atrophy, and fasciculations. Symptoms of androgen insensitivity experienced by men with SBMA are also progressive and include testicular atrophy, severe oligospermia or azoospermia, gynecomastia, and feminized skin changes despite elevated androgen levels. Disease onset, which usually affects the proximal musculature first, occurs in the third to fifth decades of life, and is often preceded by muscular cramps on exertion, tremor of the hands, and elevated muscle creatine kinase. SBMA is often misdiagnosed as amyotrophic lateral sclerosis (ALS) (also known as Lou Gehrig's disease).
The symptoms of SBMA are thought to be brought about by two simultaneous pathways involving the toxic misfolding of proteins and loss of AR functionality. The polyglutamine tract in affected pedigrees tends to increase in length over generations, a phenomenon known as "anticipation", leading to an increase in the severity of the disease as well as a decrease in the age of onset for each subsequent generation of a family affected by SBMA.
Individuals with mild (or minimal) androgen insensitivity syndrome (grade 1 on the Quigley scale) are born phenotypically male, with fully masculinized genitalia; this category of androgen insensitivity is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to impair virilization or spermatogenesis, but is not great enough to impair normal male genital development. MAIS is the mildest and least known form of androgen insensitivity syndrome.
The existence of a variant of androgen insensitivity that solely affected spermatogenesis was theoretical at first. Cases of phenotypically normal males with isolated spermatogenic defect due to AR mutation were first detected as the result of male infertility evaluations. Until then, early evidence in support of the existence of MAIS was limited to cases involving a mild defect in virilization, although some of these early cases made allowances for some degree of impairment of genital masculinization, such as hypospadias or micropenis. It is estimated that 2-3% of infertile men have AR gene mutations.
Examples of MAIS phenotypes include isolated infertility (oligospermia or azoospermia), mild gynecomastia in young adulthood, decreased secondary terminal hair, high pitched voice, or minor hypospadias repair in childhood. The external male genitalia (penis, scrotum, and urethra) are otherwise normal in individuals with MAIS. Internal genitalia, including Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) and the prostate, is also normal, although the bitesticular volume of infertile men (both with and without MAIS) is diminished; male infertility is associated with reduced bitesticular volume, varicocele, retractile testes, low ejaculate volume, male accessory gland infections (MAGI), and mumps orchitis. The incidence of these features in infertile men with MAIS is similar to that of infertile men without MAIS. MAIS is not associated with Müllerian remnants.
Aspermia is the complete lack of semen with ejaculation (not to be confused with azoospermia, the lack of sperm cells in the semen). It is associated with infertility.
One of the causes of aspermia is retrograde ejaculation, which can be brought on by excessive drug use, or as a result of prostate surgery. It can also be caused by alpha blockers such as tamsulosin and silodosin.
Another cause of aspermia is ejaculatory duct obstruction, which may result in a complete lack of or a very low-concentration semen (oligospermia), in which the semen contains only the secretion of accessory prostate glands downstream to the orifice of the ejaculatory ducts.
Aspermia can be caused by androgen deficiency. This can be the result of absence of puberty, in which the prostate gland and seminal vesicles (which are the main sources of semen) remain small due to lack of androgen exposure and do not produce seminal fluid, or of treatment for prostate cancer, such as maximal androgen blockade.
Globozoospermia (also known as round-headed sperm syndrome) is a rare and severe form of monomorphic teratozoospermia. This means that the spermatozoa show the same abnormality, and over 85% of spermatozoa in sperm have this abnormality. Globozoospermia is responsible for less than 0.1% of male infertility. It characterised by round-headed spermatozoa without acrosome, an abnormal nuclear membrane and midpiece defects. Affected males therefore suffer from either reduced fertility or infertility. Studies suggest that globozoospermia can be either total (100% round-headed spermatozoa without acrosomes) or partial (20-60% round acrosomeless spermatozoa with normal sperm also identified in the sperm count,) however it is unclear whether these two forms are variations on the same syndrome, or actually different syndromes.
Studies have suggested mutations or deletions in three genes are responsible for this condition: SPATA16, PICK1 and DPY19L2. ICSI (intracytoplasmic sperm injection) has previously been used to assist reproduction in globozoospermic patients, however it has not been particularly effective in all patients, due to low fertilisation rates.
Asthenozoospermia (or asthenospermia) is the medical term for reduced sperm motility. Complete asthenozoospermia, that is, 100% immotile spermatozoa in the ejaculate, is reported at a frequency of 1 of 5000 men. Causes of complete asthenozoospermia include metabolic deficiencies, ultrastructural abnormalities of the sperm flagellum (see Primary ciliary dyskinesia) and necrozoospermia.
It decreases the sperm quality and is therefore one of the major causes of infertility or reduced fertility in men. A method to increase the chance of pregnancy is ICSI. The percentage of viable spermatozoa in complete asthenozoospermia varies between 0 and 100%.
Female infertility refers to infertility in female humans. It affects an estimated 48 million women with the highest prevalence of infertility affecting people in South Asia, Sub-Saharan Africa, North Africa/Middle East, and Central/Eastern Europe and Central Asia. Infertility is caused by many sources, including nutrition, diseases, and other malformations of the uterus. Infertility affects women from around the world, and the cultural and social stigma surrounding it varies.
Unexplained infertility is infertility that is idiopathic in the sense that its cause remains unknown even after an infertility work-up, usually including semen analysis in the man and assessment of ovulation and fallopian tubes in the woman.
The testicle or testis is the male reproductive gland in all animals, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testosterone. Testosterone release is controlled by the anterior pituitary luteinizing hormone; whereas sperm production is controlled both by the anterior pituitary follicle-stimulating hormone and gonadal testosterone.
AIS is broken down into three classes based on phenotype: complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen insensitivity syndrome (MAIS). A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995. The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of decreasingly masculinized genitalia that lie in the interim. Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent. The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.
On average, the ovaries supply a woman with eggs until age 51, the average age of natural menopause.
POF is not the same as a natural menopause, in that the dysfunction of the ovaries, loss of eggs, or removal of the ovaries at a young age is not a normal physiological occurrence.
Infertility is the result of this condition, and is the most discussed problem resulting from it, but there are additional health implications of the problem, and studies are ongoing. For example, osteoporosis or decreased bone density affects almost all women with POF due to an insufficiency of estrogen. There is also an increased risk of heart disease, hypothyroidism in the form of Hashimoto's thyroiditis, Addison's disease, and other auto-immune disorders.
Hormonally, POF is defined by abnormally low levels of estrogen and high levels of FSH, which demonstrate that the ovaries are no longer responding to circulating FSH by producing estrogen and developing fertile eggs. The ovaries will likely appear shriveled.
The age of onset can be as early as the teenage years, or can even exist from birth, but varies widely. If a girl never begins menstruation, it is called primary ovarian failure. The age of 40 was chosen as the cut-off point for a diagnosis of POF. This age was chosen somewhat arbitrarily, as all women's ovaries decline in function over time. However an age needed to be chosen to distinguish usual menopause from the abnormal state of premature menopause. Premature ovarian failure has components to it that distinguish it from normal menopause.
By the age of 40, approximately one percent of women have POF. Women suffering from POF usually experience menopausal symptoms that are more severe than the symptoms found in older menopausal women.
Sperm DNA fragmentation level is higher in men with sperm motility defects (asthenozoospermia) than in men with oligozoospermia or teratozoospermia. Among men with asthenozoospermia, 31% were found to have high levels of DNA fragmentation. As reviewed by Wright et al., high levels of DNA fragmentation have been shown to be a robust indicator of male infertility.
Premature ovarian failure (POF) is the loss of function of the ovaries before age 40. A commonly cited triad for the diagnosis is amenorrhea, hypergonadotropism, and hypoestrogenism. If it has a genetic cause, it may be called gonadal dysgenesis.
The term "primary ovarian insufficiency" was first used in 1942 by Fuller Albright who first described the condition. About 5 to 10% of women with primary ovarian insufficiency conceive subsequent to the diagnosis without medical intervention.
Androgen insensitivity syndrome (AIS) is an intersex condition in which there is a partial or complete inability of many cells in the affected genetic male to respond to androgenic hormones. This can prevent or impair the masculinization of male genitalia in the developing genetic male (chromosomal XY) fetus, as well as the development of male secondary sexual characteristics at puberty. Clinical phenotypes range from a normal male habitus with mild spermatogenic defect or reduced secondary terminal hair; to a full female habitus despite the presence of a Y-chromosome. Women (chromosomal XX) who are heterozygous for the AR gene have normal primary and secondary sexual characteristics; this female carrier will pass the affected AR gene to any child she has with 50% likelihood. AIS is the largest single entity that leads to 46,XY undermasculinized genitalia.
The androgen receptor (AR), which is defective due to a mutation in most of these syndromes, is a type of nuclear receptor that is activated by binding to either of the androgenic hormones (testosterone or dihydrotestosterone) in the cytoplasm, and then translocates into the nucleus where it binds to DNA, provided androgen response elements and coactivators are present. This combination functions as a transcription complex to turn on androgen gene expression. Thus the AR activates these genes to mediate the effects of androgens in the human body, including the development and maintenance of the male sexual phenotype and generalized anabolic effects. Over 400 AR mutations have been reported.
AIS is divided into three categories that are differentiated by the degree of genital masculinization: complete androgen insensitivity syndrome (CAIS) is indicated when the external genitalia are that of a normal female; mild androgen insensitivity syndrome (MAIS) is indicated when the external genitalia are that of a normal male, and partial androgen insensitivity syndrome (PAIS) is indicated when the external genitalia are partially, but not fully, masculinized.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
There is no unanimous definition of female infertility, because the definition depends on social and physical characteristics which may vary by culture and situation. NICE guidelines state that: "A woman of reproductive age who has not conceived after 1 year of unprotected vaginal sexual intercourse, in the absence of any known cause of infertility, should be offered further clinical assessment and investigation along with her partner." It is recommended that a consultation with a fertility specialist should be made earlier if the woman is aged 36 years or over, or there is a known clinical cause of infertility or a history of predisposing factors for infertility. According to the World Health Organization (WHO), infertility can be described as the inability to become pregnant, maintain a pregnancy, or carry a pregnancy to live birth.
A clinical definition of infertility by the WHO and ICMART is “a disease of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse.” Infertility can further be broken down into primary and secondary infertility. Primary infertility refers to the inability to give birth either because of not being able to become pregnant, or carry a child to live birth, which may include miscarriage or a stillborn child.