Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The patient with meningococcal meningitis typically presents with high fever, nuchal rigidity (stiff neck), Kernig's sign, severe headache, vomiting, purpura, photophobia, and sometimes chills, altered mental status, or seizures. Diarrhea or respiratory symptoms are less common. Petechiae are often also present, but do not always occur, so their absence should not be used against the diagnosis of meningococcal disease. Anyone with symptoms of meningococcal meningitis should receive intravenous antibiotics before the results of lumbar puncture, as delay in treatment worsens the prognosis.
Symptoms of meningococcemia are, at least initially, similar to those of influenza. Typically, the first symptoms include fever, nausea, myalgia, headache, arthralgia, chills, diarrhea, stiff neck, and malaise. Later symptoms include septic shock, purpura, hypotension, cyanosis, petechiae, seizures, anxiety, and multiple organ dysfunction syndrome. Acute respiratory distress syndrome and altered mental status may also occur. The petichial rash appear with the 'star-like' shape. Meningococcal sepsis has a greater mortality rate than meningococcal meningitis, but the risk of neurologic sequelae is much lower.
In adults, the most common symptom of meningitis is a severe headache, occurring in almost 90% of cases of bacterial meningitis, followed by nuchal rigidity (the inability to flex the neck forward passively due to increased neck muscle tone and stiffness). The classic triad of diagnostic signs consists of nuchal rigidity, sudden high fever, and altered mental status; however, all three features are present in only 44–46% of bacterial meningitis cases. If none of the three signs are present, acute meningitis is extremely unlikely. Other signs commonly associated with meningitis include photophobia (intolerance to bright light) and phonophobia (intolerance to loud noises). Small children often do not exhibit the aforementioned symptoms, and may only be irritable and look unwell. The fontanelle (the soft spot on the top of a baby's head) can bulge in infants aged up to 6 months. Other features that distinguish meningitis from less severe illnesses in young children are leg pain, cold extremities, and an abnormal skin color.
Nuchal rigidity occurs in 70% of bacterial meningitis in adults. Other signs include the presence of positive Kernig's sign or Brudziński sign. Kernig's sign is assessed with the person lying supine, with the hip and knee flexed to 90 degrees. In a person with a positive Kernig's sign, pain limits passive extension of the knee. A positive Brudzinski's sign occurs when flexion of the neck causes involuntary flexion of the knee and hip. Although Kernig's sign and Brudzinski's sign are both commonly used to screen for meningitis, the sensitivity of these tests is limited. They do, however, have very good specificity for meningitis: the signs rarely occur in other diseases. Another test, known as the "jolt accentuation maneuver" helps determine whether meningitis is present in those reporting fever and headache. A person is asked to rapidly rotate the head horizontally; if this does not make the headache worse, meningitis is unlikely.
Other problems can produce symptoms similar to those above, but from non-meningitic causes. This is called meningism or pseudomeningitis.
Meningitis caused by the bacterium "Neisseria meningitidis" (known as "meningococcal meningitis") can be differentiated from meningitis with other causes by a rapidly spreading petechial rash, which may precede other symptoms. The rash consists of numerous small, irregular purple or red spots ("petechiae") on the trunk, lower extremities, mucous membranes, conjuctiva, and (occasionally) the palms of the hands or soles of the feet. The rash is typically non-blanching; the redness does not disappear when pressed with a finger or a glass tumbler. Although this rash is not necessarily present in meningococcal meningitis, it is relatively specific for the disease; it does, however, occasionally occur in meningitis due to other bacteria. Other clues on the cause of meningitis may be the skin signs of hand, foot and mouth disease and genital herpes, both of which are associated with various forms of viral meningitis.
Additional problems may occur in the early stage of the illness. These may require specific treatment, and sometimes indicate severe illness or worse prognosis. The infection may trigger sepsis, a systemic inflammatory response syndrome of falling blood pressure, fast heart rate, high or abnormally low temperature, and rapid breathing. Very low blood pressure may occur at an early stage, especially but not exclusively in meningococcal meningitis; this may lead to insufficient blood supply to other organs. Disseminated intravascular coagulation, the excessive activation of blood clotting, may obstruct blood flow to organs and paradoxically increase the bleeding risk. Gangrene of limbs can occur in meningococcal disease. Severe meningococcal and pneumococcal infections may result in hemorrhaging of the adrenal glands, leading to Waterhouse-Friderichsen syndrome, which is often fatal.
The brain tissue may swell, pressure inside the skull may increase and the swollen brain may herniate through the skull base. This may be noticed by a decreasing level of consciousness, loss of the pupillary light reflex, and abnormal posturing. The inflammation of the brain tissue may also obstruct the normal flow of CSF around the brain (hydrocephalus). Seizures may occur for various reasons; in children, seizures are common in the early stages of meningitis (in 30% of cases) and do not necessarily indicate an underlying cause. Seizures may result from increased pressure and from areas of inflammation in the brain tissue. Focal seizures (seizures that involve one limb or part of the body), persistent seizures, late-onset seizures and those that are difficult to control with medication indicate a poorer long-term outcome.
Inflammation of the meninges may lead to abnormalities of the cranial nerves, a group of nerves arising from the brain stem that supply the head and neck area and which control, among other functions, eye movement, facial muscles, and hearing. Visual symptoms and hearing loss may persist after an episode of meningitis. Inflammation of the brain (encephalitis) or its blood vessels (cerebral vasculitis), as well as the formation of blood clots in the veins (cerebral venous thrombosis), may all lead to weakness, loss of sensation, or abnormal movement or function of the part of the body supplied by the affected area of the brain.
Pneumococcal infection is an infection caused by the bacterium "Streptococcus pneumoniae". "S. pneumoniae" is a common member of the bacterial flora colonizing the nose and throat of 5–10% of healthy adults and 20–40% of healthy children. However, it is also the cause of significant disease being a leading cause of pneumonia, bacterial meningitis, and sepsis. The World Health Organization estimate that in 2005 pneumococcal infections were responsible for the death of 1.6 million children worldwide.
In documented BPF cases, the symptoms include high fever (101.3 degrees F or higher), nausea, vomiting, severe abdominal pain, septic shock, and ultimately death. A history of conjunctivitis 30 days prior to the onset of fever was also present in the documented BPF cases.
The physical presentation of children infected with BPF include purpuric skin lesions affecting mainly the face and extremities, cyanosis, rapid necrosis of soft tissue, particularly the hands, feet, nose, and ears. Analysis of the fatalities due to BPF showed hemorrhage in the skin, lungs, and adrenal glands. Histopathology showed hemorrhage, intravascular microthrombi and necrosis in the upper dermis, renal glomeruli, lungs, and hepatic sinusoids.
"S. pneumoniae" is responsible for 15–50% of all episodes of community acquired pneumonia, 30–50% of all cases of acute otitis media, and a significant proportion of bloodstream infections and bacterial meningitis.
As estimated by WHO in 2005 it killed about 1.6 million children every year worldwide with 0.7–1 million of them being under the age of five. The majority of these deaths were in developing countries.
A positive BPF diagnosis includes the clinical symptoms (mainly the fever, purpuric lesions, and rapid progression of the disease), isolation of "Haemophilus Influenzae" Biogroup aegyptius from blood, and negative laboratory tests for "Neisseria meningitidis".
The negative tests for "Neisseria meningitidis" rules out the possibility of the symptoms being caused by meningitis, since the clinical presentations of the two diseases are similar.
A subclinical infection (sometimes called a preinfection) is an infection that, being , is nearly or completely asymptomatic (no signs or symptoms). A subclinically infected person is thus an asymptomatic carrier of a microbe, intestinal parasite, or virus that usually is a pathogen causing illness, at least in some individuals. Many pathogens spread by being silently carried in this way by some of their host population. Such infections occur both in humans and nonhuman animals. An example of an asymptomatic infection is a mild common cold that is not noticed by the infected individual. Since subclinical infections often occur without eventual overt sign, their existence is only identified by microbiological culture or DNA techniques such as polymerase chain reaction.
An overwhelming post-splenectomy infection (OPSI) or Overwhelming post-splenectomy sepsis (OPSS) is a rare but rapidly fatal infection occurring in individuals following removal of the spleen. The infections are typically characterized by either meningitis or sepsis, and are caused by encapsulated organisms including "Streptococcus pneumoniae".
The risk of OPSI is 0.23–0.42 percent per year, with a lifetime risk of 5 percent. Most infections occur in the first few years following splenectomy, but the risk of OPSI is lifelong. OPSI is almost always fatal without treatment, and modern treatment has decreased the mortality to approximately 40–70 percent. Individuals with OPSI are most commonly treated with antibiotics and supportive care. Measures to prevent OPSI include vaccination and prophylactic antibiotics.
Characteristics of a viral infection can include pain, swelling, redness, impaired function, fever, drowsiness, confusion and convulsions.
The most common diseases caused by chronic viral infections are subacute-sclerosing panencephalitis, progressive multifocal leukoencephalopathy, retrovirus disease and spongiform encephalopathies.
Waterhouse–Friderichsen syndrome (WFS) is defined as adrenal gland failure due to bleeding into the adrenal glands, commonly caused by severe bacterial infection: Typically it is caused by "Neisseria meningitidis".
The bacterial infection leads to massive bleeding into one or (usually) both adrenal glands. It is characterized by overwhelming bacterial infection meningococcemia leading to massive blood invasion, organ failure, coma, low blood pressure and shock, disseminated intravascular coagulation (DIC) with widespread purpura, rapidly developing adrenocortical insufficiency and death.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
Waterhouse-Friderichsen Syndrome can be caused by a number of different organisms (see below). When caused by Neisseria meningitidis, WFS is considered the most severe form of meningococcal sepsis. The onset of the illness is nonspecific with fever, rigors, vomiting, and headache. Soon a rash appears; first macular, not much different from the rose spots of typhoid, and rapidly becoming petechial and purpuric with a dusky gray color. Low blood pressure (hypotension) develops and rapidly leads to septic shock. The cyanosis of extremities can be extreme and the patient is very prostrated or comatose. In this form of meningococcal disease, meningitis generally does not occur. Low levels of blood glucose and sodium, high levels of potassium in the blood, and the ACTH stimulation test demonstrate the acute adrenal failure. Leukocytosis need not be extreme and in fact leukopenia may be seen and it is a very poor prognostic sign. C-reactive protein levels can be elevated or almost normal. Thrombocytopenia is sometimes extreme, with alteration in prothrombin time (PT) and partial thromboplastin time (PTT) suggestive of disseminated intravascular coagulation (DIC). Acidosis and acute kidney failure can be seen as in any severe sepsis. Meningococci can be readily cultured from blood or cerebrospinal fluid, and can sometimes be seen in smears of cutaneous lesions. Difficulty swallowing, atrophy of the tongue, and cracks at the corners of the mouth are also characteristic features.
The signs of sepsis are non-specific and include:
- Body temperature changes
- Breathing problems
- Diarrhea
- Low blood sugar (hypoglycemia)
- Reduced movements
- Reduced sucking
- Seizures
- Bradycardia
- Swollen belly area
- Vomiting
- Yellow skin and whites of the eyes (jaundice)
A heart rate above 160 can also be an indicator of sepsis, this tachycardia can present up to 24 hours before the onset of other signs.
Common (≥ 1% of people) adverse drug reactions associated with use of the penicillins include diarrhoea, hypersensitivity, nausea, rash, neurotoxicity, urticaria, and superinfection (including candidiasis). Infrequent adverse effects (0.1–1% of people) include fever, vomiting, erythema, dermatitis, angioedema, seizures (especially in people with epilepsy), and pseudomembranous colitis. Penicillin can also induce serum sickness or a serum sickness-like reaction in some individuals. Serum sickness is a type III hypersensitivity reaction that occurs one to three weeks after exposure to drugs including penicillin. It is not a true drug allergy, because allergies are type I hypersensitivity reactions, but repeated exposure to the offending agent can result in an anaphylactic reaction. Anaphylaxis will occur in approximately 0.01% of patients.
Pain and inflammation at the injection site is also common for parenterally administered benzathine benzylpenicillin, benzylpenicillin, and, to a lesser extent, procaine benzylpenicillin.
Neonatal sepsis is a type of neonatal infection and specifically refers to the presence in a newborn baby of a bacterial blood stream infection (BSI) (such as meningitis, pneumonia, pyelonephritis, or gastroenteritis) in the setting of fever. Older textbooks may refer to neonatal sepsis as "sepsis neonatorum". Criteria with regards to hemodynamic compromise or respiratory failure are not useful clinically because these symptoms often do not arise in neonates until death is imminent and unpreventable. Neonatal sepsis is divided into two categories: early-onset sepsis (EOS) and late-onset sepsis (LOS). EOS refers to sepsis presenting in the first 7 days of life (although some refer to EOS as within the first 72 hours of life), with LOS referring to presentation of sepsis after 7 days (or 72 hours, depending on the system used). neonatal sepsis is the single most important cause of neonatal death in hospital as well as community in developing country.
It is difficult to clinically exclude sepsis in newborns less than 90 days old that have fever (defined as a temperature > 38 °C (100.4 °F). Except in the case of obvious acute viral bronchiolitis, the current practice in newborns less than 30 days old is to perform a complete workup including complete blood count with differential, blood culture, urinalysis, urine culture, and cerebrospinal fluid (CSF) studies and CSF culture, admit the newborn to the hospital, and treat empirically for serious bacterial infection for at least 48 hours until cultures are demonstrated to show no growth. Attempts have been made to see whether it is possible to risk stratify newborns in order to decide if a newborn can be safely monitored at home without treatment despite having a fever. One such attempt is the Rochester criteria.
"Staphylococcus" is a genus of Gram-positive bacteria that can cause a wide variety of infections in humans and other animals through infection or the production of toxins.
Staphylococcal toxins are a common cause of food poisoning, as they can be produced in improperly-stored food. Staphylococci are also known to be a cause of bacterial conjunctivitis. "Staphylococcus aureus" can cause a number of different skin diseases. Among neurosurgical patients, it can cause community-acquired meningitis.
The term "penicillin" is often used generically to refer to benzylpenicillin (penicillin G, the original penicillin found in 1928), procaine benzylpenicillin (procaine penicillin), benzathine benzylpenicillin (benzathine penicillin), and phenoxymethylpenicillin (penicillin V). Procaine penicillin and benzathine penicillin have the same antibacterial activity as benzylpenicillin but act for a longer period of time. Phenoxymethylpenicillin is less active against gram-negative bacteria than benzylpenicillin. Benzylpenicillin, procaine penicillin and benzathine penicillin can be given by intravenous or intramuscular injections, but phenoxymethylpenicillin can be given by mouth because of its acidic stability.
In very low birth weight infants (VLBWI), systemic fungus infection is a hospital-acquired infection with serious consequences. The pathogens are usually "Candida albicans" and "Candida parapsilosis". A small percentage of fungal infections are caused by "Aspergillus", "Zygomycetes", "Malassezia", and "Trichosporon". Infection is usually late-onset. Up to 9% of VLBWI with birth weights of <1,000 g develop these fungus infections leading to sepsis or meningitis. As many as one-third of these infants can die. Candidiasis is associated with retinopathy, prematurity and negative neurodevelopmental consequences. Candida can colonize the gastrointestinal tract of low birthweight infants (LBI). This gastrointestinal colonization is often a precursor to a more serious invasive infection. The risk of serious candida infection increases when multiple factors are present. These are: thrombocytopenia, the presence of candidal dermatitis, the use of systemic steroids, birth weights of <1,000 g, presence of a central catheter, postponing enteral feeding, vaginal delivery, and the amount of time broad-spectrum antibiotics were given.
Neonatal infections are infections of the neonate (newborn) during the neonatal period or first four weeks after birth. Neonatal infections may be contracted by transplacental transfer in utero, in the birth canal during delivery (perinatal), or by other means after birth. Some neonatal infections are apparent soon after delivery, while others may develop postpartum within the first week or month. Some infections acquired in the neonatal period do not become apparent until much later such as HIV, hepatitis B and malaria.
There is a higher risk of infection for preterm or low birth weight neonates. Respiratory tract infections contracted by preterm neonates may continue into childhood or possibly adulthood with long-term effects that limit one's ability to engage in normal physical activities, decreasing one's quality of life and increasing health care costs. In some instances, neonatal respiratory tract infections may increase one's susceptibility to future respiratory infections and inflammatory responses related to lung disease.
Antibiotics can be effective treatments for neonatal infections, especially when the pathogen is quickly identified. Instead of relying solely on culturing techniques, pathogen identification has improved substantially with advancing technology; however, neonate mortality has not kept pace and remains 20% to 50%. While preterm neonates are at a particularly high risk, full term and post-term infants can also develop infection. Neonatal infection may also be associated with premature rupture of membranes (breakage of the amniotic sac) which substantially increases the risk of neonatal sepsis by allowing passage for bacteria to enter the womb prior to the birth of the infant. Neonatal infection can be distressing to the family and it initiates concentrated effort to treat it by clinicians.Research to improve treatment of infections and prophylactic treatment of the mother to avoid infections of the infant is ongoing.
Common signs and symptoms include:
- sore throat
- red, swollen tonsils
- pain when swallowing
- high temperature (fever)
- headache
- tiredness
- chills
- a general sense of feeling unwell (malaise)
- white pus-filled spots on the tonsils
- swollen lymph nodes (glands) in the neck
- pain in the ears or neck
- weight loss
- difficulty ingesting and swallowing meal/liquid intake
- difficulty sleeping
Less common symptoms include:
- nausea
- fatigue
- stomach ache
- vomiting
- furry tongue
- bad breath (halitosis)
- voice changes
- difficulty opening the mouth (trismus)
- loss of appetite
- Anxiety/fear of choking
In cases of acute tonsillitis, the surface of the tonsil may be bright red and with visible white areas or streaks of pus.
Tonsilloliths occur in up to 10% of the population frequently due to episodes of tonsillitis.
The generic name Staphylococcus is derived from the Greek word "staphyle," meaning bunch of grapes, and "kokkos," meaning granule. The bacteria, when seen under a microscope, appear like a branch of grapes or berries.
Neonatal conjunctivitis by definition presents during the first month of life. It may be infectious or non infectious. In infectious conjunctivitis, the organism is transmitted from the genital tract of an infected mother during birth or by infected hands.
- Pain and tenderness in the eyeball.
- Conjunctival discharge: purulent, mucoid or mucopurulent depending on the cause.
- Conjunctiva shows hyperaemia and chemosis. Eyelids are usually swollen.
- Corneal involvement (rare) may occur in herpes simplex ophthalmia neonatorum.