Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Infection first presents with severe abdominal pain, nausea, vomiting, and weakness, which gradually lessens and progresses to fever, and then to CNS symptoms and severe headache and stiffness of the neck.
Frequently asymptomatic. Gastrointestinal system symptoms include abdominal pain and diarrhea. Pulmonary symptoms (including Löffler's syndrome) can occur during pulmonary migration of the filariform larvae. Dermatologic manifestations include urticarial rashes in the buttocks and waist areas as well as larva currens. Eosinophilia is generally present.
Strongyloidiasis can become chronic and then become completely asymptomatic.
An ectoparasitic infestation is a parasitic disease caused by organisms that live primarily on the surface of the host.
Examples:
- Scabies
- Crab louse (pubic lice)
- Pediculosis (head lice)
- "Lernaeocera branchialis" (cod worm)
CNS symptoms begin with mild cognitive impairment and slowed reactions, and in a very severe form often progress to unconsciousness. Patients may present with neuropathic pain early in the infection. Eventually severe infection will lead to ascending weakness, quadriparesis, areflexia, respiratory failure, and muscle atrophy, and will lead to death if not treated. Occasionally patients present with cranial nerve palsies, usually in nerves 7 and 8, and rarely larvae will enter ocular structures. Even with treatment, damage to the CNS may be permanent and result in a variety of negative outcomes depending on the location of the infection, and the patient may suffer chronic pain as a result of infection.
Strongyloides infection occurs in five forms. On acquiring the infection, there may be respiratory symptoms (Löffler's syndrome). The infection may then become chronic with mainly digestive symptoms. On reinfection (when larvae migrate through the body), there may be respiratory, skin and digestive symptoms. Finally, the hyperinfection syndrome causes symptoms in many organ systems, including the central nervous system.
Although organisms such as bacteria function as parasites, the usage of the term "parasitic disease" is usually more restricted. The three main types of organisms causing these conditions are protozoa (causing protozoan infection), helminths (helminthiasis), and ectoparasites. Protozoa and helminths are usually endoparasites (usually living inside the body of the host), while ectoparasites usually live on the surface of the host. Occasionally the definition of "parasitic disease" is restricted to diseases due to endoparasites.
Infections by "Mansonella perstans", while often asymptomatic, can be associated with angioedema, pruritus, fever, headaches, arthralgias, and neurologic manifestations. "Mansonella streptocerca" can manifest on the skin via pruritus, papular eruptions and pigmentation changes. "Mansonella ozzardi" can cause symptoms that include arthralgias, headaches, fever, pulmonary symptoms, adenopathy, hepatomegaly, and pruritus. Eosinophilia is often prominent in all cases of Mansonelliasis. "M. perstans" can also present with Calabar-like swellings, hives, and a condition known as Kampala, or Ugandan eye worm. This occurs when adult M. perstans invades the conjunctiva or periorbital connective tissues in the eye. "M. perstans" can also present with hydrocele in South America. However, it is often hard to distinguish between the symptoms of Mansonelliasis and other nematode infections endemic to the same areas.
Symptoms of parasites may not always be obvious. However, such symptoms may mimic anemia or a hormone deficiency. Some of the symptoms caused by several worm infestation can include itching affecting the anus or the vaginal area, abdominal pain, weight loss, increased appetite, bowel obstructions, diarrhea, and vomiting eventually leading to dehydration, sleeping problems, worms present in the vomit or stools, anemia, aching muscles or joints, general malaise, allergies, fatigue, nervousness. Symptoms may also be confused with pneumonia or food poisoning.
The effects caused by parasitic diseases range from mild discomfort to death.
The nematode parasites "Necator americanus" and "Ancylostoma duodenale" cause human hookworm infection, which leads to anaemia and protein malnutrition. This infection affects approximately 740 million people in the developing countries, including children and adults, of the tropics specifically in poor rural areas located in sub-Saharan Africa, Latin America, South-East Asia and China.
Chronic hookworm in children leads to impaired physical and intellectual development, school performance and attendance are reduced.
Pregnant women affected by a hookworm infection can also develop aneamia, which results in negative outcomes both for the mother and the infant. Some of them are: low birth weight, impaired milk production, as well as increased risk of death for the mother and the baby.
Waterborne diseases are conditions caused by pathogenic micro-organisms that are transmitted in water. Disease can be spread while bathing, washing or drinking water, or by eating food exposed to infected water. Various forms of waterborne diarrheal disease are the most prominent examples, and affect children in developing countries most dramatically.
According to the World Health Organization, waterborne diseases account for an estimated 3.6% of the total DALY (disability- adjusted life year) global burden of disease, and cause about 1.5 million human deaths annually. The World Health Organization estimates that 58% of that burden, or 842,000 deaths per year, is attributable to a lack of safe drinking water supply, sanitation and hygiene (summarized as WASH).
The first potential reaction is an itchy, papular rash that results from cercariae penetrating the skin, often in a person's first infection. The round bumps are usually one to three centimeters across. Because people living in affected areas have often been repeatedly exposed, acute reactions are more common in tourists and migrants. The rash can occur between the first few hours and a week after exposure and lasts for several days. A similar, more severe reaction called "swimmer's itch" reaction can also be caused by cercariae from animal trematodes that often infect birds.
In intestinal schistosomiasis, eggs become lodged in the intestinal wall and cause an immune system reaction called a granulomatous reaction. This immune response can lead to obstruction of the colon and blood loss. The infected individual may have what appears to be a potbelly. Eggs can also become lodged in the liver, leading to high blood pressure through the liver, enlarged spleen, the buildup of fluid in the abdomen, and potentially life-threatening dilations or swollen areas in the esophagus or gastrointestinal tract that can tear and bleed profusely (esophageal varices). In rare instances, the central nervous system is affected. Individuals with chronic active schistosomiasis may not complain of typical symptoms.
There are no specific symptoms or signs of hookworm infection, but they give rise to a combination of intestinal inflammation and progressive iron-deficiency anemia and protein deficiency. Coughing, chest pain, wheezing, and fever will sometimes result from severe infection. Epigastric pains, indigestion, nausea, vomiting, constipation, and diarrhea can occur early or in later stages as well, although gastrointestinal symptoms tend to improve with time. Signs of advanced severe infection are those of anemia and protein deficiency, including emaciation, cardiac failure and abdominal distension with ascites.
Larval invasion of the skin (mostly in the Americas) can produce a skin disease called cutaneous larva migrans also known as "creeping eruption". The hosts of these worms are not human and the larvae can only penetrate the upper five layers of the skin, where they give rise to intense, local itching, usually on the foot or lower leg, known as "ground itch". This infection is due to larvae from the "A. Braziliense" hookworm. The larvae migrate in tortuous tunnels between the "stratum basale" and "stratum corneum" of the skin, causing serpiginous vesicular lesions. With advancing movement of the larvae, the rear portions of the lesions become dry and crusty. The lesions are typically intensely itchy.
The term "hookworm" is sometimes used to refer to hookworm infection. A hookworm is a type of parasitic worm (helminth).
Mansonelliasis (or mansonellosis) is the condition of infection by the nematode "Mansonella".
The disease exists in Africa and tropical Americas, spread by biting midges or blackflies. It is usually asymptomatic.
Clinical presentation of sparganosis most often occurs after the larvae have migrated to a subcutaneous location. The destination of the larvae is often a tissue or muscle in the chest, abdominal wall, extremities, or scrotum, although other sites include the eyes, brain, urinary tract, pleura, pericardium, and spinal canal. The early stages of disease in humans are often asymptomatic, but the spargana typically cause a painful inflammatory reaction in the tissues surrounding the subcutaneous site as they grow. Discrete subcutaneous nodules develop that may appear and disappear over a period of time. The nodules usually itch, swell, turn red, and migrate, and are often accompanied by painful edema. Seizures, hemiparesis, and headaches are also common symptoms of sparganosis, especially cerebral sparganosis, and eosinophilia is a common sign. Clinical symptoms also vary according to the location of the sparganum; possible symptoms include elephantiasis from location in the lymph channels, peritonitis from location in the intestinal perforation, and brain abscesses from location in the brain. In genital sparganosis, subcutaneous nodules are present in the groin, labia, or scrotum and may appear tumor-like.
Ocular sparganosis a particularly well-described type of sparganosis. Early signs of the ocular form include eye pain, epiphora (excessive watering of the eye), and/or ptosis (drooping of the upper eyelid). Other signs include periorbital edema and/or edematous swelling that resembles Romana’s sign in Chagas disease, lacrimation, orbital cellulitis, exophthalmos (protrusion of the eyeball), and/or an exposed cornea ulcer. The most common sign at presentation is a mass lesion in the eye. If untreated, ocular sparganosis can lead to blindness.
In one case of brain infestation by "Spirometra erinaceieuropaei", a man sought treatment on suffering headaches, seizures, memory flashbacks and strange smells. Magnetic resonance imaging (MRI) scans showed a cluster of rings, initially in the right medial temporal lobe, but moving over time to the other side of the brain. The cause was not determined for four years; ultimately a biopsy was performed and a 1 cm-long tapeworm was found and removed. The patient continued to suffer symptoms.
The course of fasciolosis in humans has 4 main phases:
- Incubation phase: from the ingestion of metacercariae to the appearance of the first symptoms; time period: few days to 3 months; depends on number of ingested metacercariae and immune status of host
- Invasive or acute phase: fluke migration up to the bile ducts. This phase is a result of mechanical destruction of the hepatic tissue and the peritoneum by migrating juvenile flukes causing localized and or generalized toxic and allergic reactions. The major symptoms of this phase are:
- Fever: usually the first symptom of the disease;
- Abdominal pain
- Gastrointestinal disturbances: loss of appetite, flatulence, nausea, diarrhea
- Urticaria
- Respiratory symptoms (very rare): cough, dyspnoea, chest pain, hemoptysis
- Hepatomegaly and splenomegaly
- Ascites
- Anaemia
- Jaundice
- Latent phase: This phase can last for months or years. The proportion of asymptomatic subjects in this phase is unknown. They are often discovered during family screening after a patient is diagnosed.
- Chronic or obstructive phase:
This phase may develop months or years after initial infection. Adult flukes in the bile ducts cause inflammation and hyperplasia of the epithelium. The resulting cholangitis and cholecystitis, combined with the large body of the flukes, are sufficient to cause mechanical obstruction of the biliary duct. In this phase, biliary colic, epigastric pain, fatty food intolerance, nausea, jaundice, pruritus, right upper-quadrant abdominal tenderness, etc., are clinical manifestations indistinguishable from cholangitis, cholecystitis and cholelithiasis of other origins. Hepatic enlargement may be associated with an enlarged spleen or ascites. In case of obstruction, the gall bladder is usually enlarged and edematous with thickening of the wall (Ref: Hepatobiliary Fascioliasis:
Sonographic and CT Findings in 87 Patients During the InitialPhase and Long-Term Follow-Up. Adnan Kabaalioglu, Kagan Ceken, Emel Alimoglu, Rabin Saba, Metin Cubuk, Gokhan Arslan, Ali Apaydin. AJR 2007; 189:824–828). Fibrous adhesions of the gall bladder to adjacent organs are common. Lithiasis of the bile duct or gall bladder is frequent and the stones are usually small and multiple.
Mycoses are classified according to the tissue levels initially colonized.
Most conditions of STH have a light worm burden and usually have no discernible symptoms. Heavy infections however cause a range of health problems, including abdominal pain, diarrhoea, blood and protein loss, rectal prolapse, and physical and mental retardation.
Severe ascariasis is typically a pneumonia, as the larvae invades lungs, producing fever, cough and dyspnoea during early stage of infection.
Hookworm infections insinuate a skin reaction (dermatitis), increased white blood cells (eosinophils), a pulmonary reaction (pneumonitis), and skin rash (urticarial).
Iron deficiency anaemia due to blood loss is a common symptom.
Individuals being treated with antibiotics are at higher risk of fungal infections.
Individuals with weakened immune systems are also at risk of developing fungal infections. This is the case of people with HIV/AIDS, people under steroid treatments, and people taking chemotherapy. People with diabetes also tend to develop fungal infections. Very young and very old people, also, are groups at risk. Although all are at risk of developing fungal infections, the likelihood is higher in these groups.
One third of individuals with pinworm infection are totally asymptomatic. The main symptoms are pruritus ani and perineal pruritus, i.e., itching in and around the anus and around the perineum. The itching occurs mainly during the night, and is caused by the female pinworms migrating to lay eggs around the anus. Both the migrating females and the clumps of eggs are irritating, but the mechanisms causing the intense pruritus have not been explained. The intensity of the itching varies, and it can be described as tickling, crawling sensations, or even acute pain. The itching leads to continuously scratching the area around the anus, which can further result in tearing of the skin and complications such as secondary bacterial infections, including bacterial dermatitis (i.e., skin inflammation) and folliculitis (i.e., hair follicle inflammation). General symptoms are insomnia (i.e., persistent difficulties to sleep) and restlessness. A considerable proportion of children suffer from loss of appetite, weight loss, irritability, emotional instability, and enuresis (i.e., inability to control urination).
Pinworms cannot damage the skin, and they do not normally migrate through tissues. However, in women they may move onto the vulva and into the vagina, from there moving to the external orifice of the uterus, and onwards to the uterine cavity, fallopian tubes, ovaries, and peritoneal cavity. This can cause vulvovaginitis, i.e. an inflammation of the vulva and vagina. This causes vaginal discharge and pruritus vulvae, i.e., itchiness of the vulva. The pinworms can also enter the urethra, and presumably, they carry intestinal bacteria with them. According to Gutierrez (2000), a statistically significant correlation between pinworm infection and urinary tract infections has been shown; however, Burkhart & Burkhart (2005) maintain that the incidence of pinworms as a cause of urinary tract infections remains unknown. Incidentally, one report indicated that 36% of young girls with a urinary tract infection also had pinworms. Dysuria (i.e., painful urination) has been associated with pinworm infection.
The relationship between pinworm infestation and appendicitis has been researched, but there is a lack of clear consensus on the matter: while Gutierres (2005) maintains that there exists a consensus that pinworms do not produce the inflammatory reaction, Cook (1994) states that it is controversial whether pinworms are causatively related to acute appendicitis, and Burkhart & Burkhart (2004) state that pinworm infection causes symptoms of appendicitis to surface.
Physiological reactions to "Toxocara" infection depend on the host’s immune response and the parasitic load. Most cases of "Toxocara" infection are asymptomatic, especially in adults. When symptoms do occur, they are the result of migration of second stage "Toxocara" larvae through the body.
Covert toxocariasis is the least serious of the three syndromes and is believed to be due to chronic exposure. Signs and symptoms of covert toxocariasis are coughing, fever, abdominal pain, headaches, and changes in behavior and ability to sleep. Upon medical examination, wheezing, hepatomegaly, and lymphadenitis are often noted.
High parasitic loads or repeated infection can lead to visceral larva migrans (VLM). VLM is primarily diagnosed in young children, because they are more prone to exposure and ingestion of infective eggs. "Toxocara" infection commonly resolves itself within weeks, but chronic eosinophilia may result. In VLM, larvae migration incites inflammation of internal organs and sometimes the central nervous system. Symptoms depend on the organ(s) affected. Patients can present with pallor, fatigue, weight loss, anorexia, fever, headache, rash, cough, asthma, chest tightness, increased irritability, abdominal pain, nausea, and vomiting. Sometimes the subcutaneous migration tracks of the larvae can be seen. Patients are commonly diagnosed with pneumonia, bronchospasms, chronic pulmonary inflammation, hypereosinophilia, hepatomegaly, hypergammaglobulinaemia (IgM, IgG, and IgE classes), leucocytosis, and elevated anti-A and –B isohaemagglutinins. Severe cases have occurred in people who are hypersensitive to allergens; in rare cases, epilepsy, inflammation of the heart, pleural effusion, respiratory failure, and death have resulted from VLM.
Ocular larva migrans (OLM) is rare compared with VLM. A light "Toxocara" burden is thought to induce a low immune response, allowing a larva to enter the host’s eye. Although there have been cases of concurrent OLM and VLM, these are extremely exceptional. OLM often occurs in just one eye and from a single larva migrating into and encysting within the orbit. Loss of vision occurs over days or weeks. Other signs and symptoms are red eye, white pupil, fixed pupil, retinal fibrosis, retinal detachment, inflammation of the eye tissues, retinal granulomas, and strabismus. Ocular granulomas resulting from OLM are frequently misdiagnosed as retinoblastomas. "Toxocara" damage in the eye is permanent and can result in blindness.
A case study published in 2008 supported the hypothesis that eosinophilic cellulitis may also be caused by infection with "Toxocara". In this study, the adult patient presented with eosinophilic cellulitis, hepatosplenomegaly, anemia, and a positive ELISA for "T. cani"s.
Light infestations (<100 worms) frequently have no symptoms. Heavier infestations, especially in small children, can present gastrointestinal problems including abdominal pain and distension, bloody or mucus-filled diarrhea, and tenesmus (feeling of incomplete defecation, generally accompanied by involuntary straining). Mechanical damage to the intestinal mucosa may occur, as well as toxic or inflammatory damage to the intestines of the host. While appendicitis may be brought on by damage and edema of the adjacent tissue, if there are large numbers of worms or larvae present, it has been suggested that the embedding of the worms into the ileocecal region may also make the host susceptible to bacterial infection. A severe infection with high numbers of embedded worms in the rectum leads to edema, which can cause rectal prolapse, although this is typically only seen in small children. The prolapsed, inflamed and edematous rectal tissue may even show visible worms.
Growth retardation, weight loss, nutritional deficiencies, and anemia (due to long-standing blood loss) are also characteristic of infection, and these symptoms are more prevalent and severe in children. It does not commonly cause eosinophilia.
Coinfection of "T. trichiura" with other parasites is common and with larger worm burdens can cause both exacerbation of dangerous trichuriasis symptoms such as massive gastrointestinal bleeding (shown to be especially dramatic with coinfection with "Salmonella typhi") and exacerbation of symptoms and pathogenesis of the other parasitic infection (as is typical with coinfection with "Schistosoma mansoni", in which higher worm burden and liver egg burden is common). Parasitic coinfection with HIV/AIDS, tuberculosis, and malaria is also common, especially in Sub-saharan Africa, and helminth coinfection adversely affects the natural history and progression of HIV/AIDS, tuberculosis, and malaria and can increase clinical malaria severity. In a study performed in Senegal, infections of soil-transmitted helminths like "T. trichiura" (as well as schistosome infections independently) showed enhanced risk and increased the incidence of malaria.
Heavy infestations may have bloody diarrhea. Long-standing blood loss may lead to iron-deficiency anemia. Vitamin A deficiency may also result due to infection.
Symptoms becomes evident only when the intensity of infection is relatively high. Thus the degree of negative outcomes is directly related to worm burden; more worms means greater severity of disease.
Ancylostomiasis (also anchylostomiasis or ankylostomiasis) is a hookworm disease caused by infection with Ancylostoma hookworms. The name is derived from Greek ancylos αγκύλος "crooked, bent" and stoma στόμα "mouth".
Ancylostomiasis is also known as miner's anaemia, tunnel disease, brickmaker's anaemia and Egyptian chlorosis. Helminthiasis may also refer to ancylostomiasis, but this term also refers to all other parasitic worm diseases as well. In the United Kingdom, if acquired in the context of working in a mine, the condition is eligible for Industrial Injuries Disability Benefit. It is a prescribed disease (B4) under the relevant legislation.§
Ancylostomiasis is caused when hookworms, present in large numbers, produce an iron deficiency anemia by sucking blood from the host's intestinal walls.
Necatoriasis is the condition of infection by "Necator" hookworms, such as "Necator americanus". This hookworm infection is a type of helminthiasis (infection) which is a type of neglected tropical disease.