Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because many organs can be affected by myeloma, the symptoms and signs vary greatly. A mnemonic sometimes used to remember some of the common symptoms of multiple myeloma is CRAB: C = calcium (elevated), R = renal failure, A = anemia, B = bone lesions. Myeloma has many other possible symptoms, including opportunistic infections (e.g., pneumonia) and weight loss. CRAB symptoms and proliferation of monoclonal plasma cells in the bone marrow are part of the diagnostic criteria of multiple myeloma.
Some symptoms (e.g., weakness, confusion, and fatigue) may be due to anemia or hypercalcemia. Headache, visual changes, and retinopathy may be the result of hyperviscosity of the blood depending on the properties of the paraprotein. Finally, radicular pain, loss of bowel or bladder control (due to involvement of spinal cord leading to cord compression) or carpal tunnel syndrome, and other neuropathies (due to infiltration of peripheral nerves by amyloid) may occur. It may give rise to paraplegia in late-presenting cases.
When the disease is well-controlled, neurological symptoms may result from current treatments, some of which may cause peripheral neuropathy, manifesting itself as numbness or pain in the hands, feet, and lower legs.
Signs and symptoms of WM include weakness, fatigue, weight loss, and chronic oozing of blood from the nose and gums. Peripheral neuropathy occurs in 10% of patients. Enlargement of the lymph nodes, spleen, and/or liver are present in 30–40% of cases. Other possible signs and symptoms include blurring or loss of vision, headache, and (rarely) stroke or coma.
The clinical presentation of primary PCL (pPCL) indicates a far more aggressive disease than that of a typical multiple myeloma case with its clinical features being a combination of those found in multiple myeloma and acute leukemia. Like multiple myeloma patients, pPCL patients exhibit pathologically high levels of monoclonal plasma cells in their bone marrow plus a malignant plasma cell-secreted circulating monoclonal myeloma protein, either IgG, IgA, a light chain, or none in 28-56%, 4-7%, 23-44%, or 0-12% of cases, respectively. Similar to B cell leukemias, but unlike multiple myeloma, pPCL patients exhibit relative high frequencies of splenomegaly, lymphadenopathy, hepatomegaly, kidney failure, bone marrow failure (i.e. thrombocytopenia, anemia, and/or, rarely, leukopenia), central nervous system defects, and peripheral neuropathies due to the invasion of these tissues by plasma cells and/or the deposition of their circulating monoclonal immunoglobulin in them. Compared to multiple myeloma patients, pPCL patients also: exhibit 1) high rates of developing an hypercalcemic crisis, i.e. an potentially life-threatening episode of high ionic calcium (Ca) levels in the blood due to excess bone re-absorption and/or renal failure; b) higher levels of serum lactate dehydrogenase and Beta-2 microglobulin; and c) lower rates of bone but higher rates of soft tissue plasma cell tumors termed plasmacytomas.
Lymphoma may present with certain nonspecific symptoms; if the symptoms are persistent, an evaluation to determine their cause, including possible lymphoma, should be undertaken.
- Lymphadenopathy or swelling of lymph nodes, is the primary presentation in lymphoma.
- B symptoms (systemic symptoms) – can be associated with both Hodgkin lymphoma and non-Hodgkin lymphoma. They consist of:
- Fever
- Night sweats
- Weight loss
- Other symptoms:
- Loss of appetite or anorexia
- Fatigue
- Respiratory distress or dyspnea
- Itching
Waldenström's macroglobulinemia (WM), also known as lymphoplasmacytic lymphoma, is a type of cancer affecting two types of B cells, lymphoplasmacytoid cells and plasma cells. Both cell types are white blood cells. WM is characterized by having high levels of a circulating antibody, immunoglobulin M (IgM), which is made and secreted by the cells involved in the disease. WM is an "indolent lymphoma" (i.e., one that tends to grow and spread slowly) and a type of lymphoproliferative disease which shares clinical characteristics with the indolent non-Hodgkin lymphomas. WM is commonly classified as a form of plasma cell dyscrasia. Similar to other plasma cell dyscrasias that, for example, lead to multiple myeloma, WM is commonly preceded by two clinically asymptomatic but progressively more pre-malignant phases, IgM monoclonal gammopathy of undetermined significance (i.e. IgM MGUS) and smoldering Waldenström's macroglobulinemia. The WM spectrum of dysplasias differs from other spectrums of plasma cell dyscrasias in that it involves not only aberrant plasma cells but also aberrant lymphoplasmacytoid cells and that it involves IgM while other plasma dyscrasias involve other antibody isoforms.
WM is a rare disease, with only about 1,500 cases per year in the United States. While the disease is incurable, it is treatable. Because of its indolent nature, many patients are able to lead active lives, and when treatment is required, may experience years of symptom-free remission.
Secondary PCL (sPCL) is diagnosed in 1-4% of patients known to have had multiple myeloma for a median time of ~21 months. It is the terminal phase of these patients myeloma disease. sPCL patients typically are highly symptomatic due to extensive disease with malignant plasma cell infiltrations in, and failures of, not only the bone marrow but also other organs. They have failed or broke through one or more treatment regimens and therefore may also show some of the toxic effects of these treatments.
People with monoclonal gammopathy generally do not experience signs or symptoms. Some people may experience a rash or nerve problems, such as numbness or tingling. Severe renal disease has also been found in a subset of those with monoclonal gammopathy. MGUS is usually detected by chance when the patient has a blood test for another condition or as part of standard screening.
For SPB the most common presenting symptom is that of pain in the affected bone. Back pain and other consequences of the bone lesion may occur such as spinal cord compression or pathological fracture. Around 85% of extramedullary plasmacytoma presents within the upper respiratory tract mucosa, causing possible symptoms such as epistaxis, rhinorrhoea and nasal obstruction. In some tissues it may be found as a palpable mass.
Plasmacytoma is a plasma cell dyscrasia in which a plasma cell tumour grows within soft tissue or within the axial skeleton.
The International Myeloma Working Group lists three types: solitary plasmacytoma of bone (SPB); extramedullary plasmacytoma (EP), and multiple plasmacytomas that are either primary or recurrent. The most common of these is SPB, accounting for 3–5% of all plasma cell malignancies. SPBs occur as lytic lesions within the axial skeleton and extramedullary plasmacytomas most often occur in the upper respiratory tract (85%), but can occur in any soft tissue. Approximately half of all cases produce paraproteinemia. SPBs and extramedullary plasmacytomas are mostly treated with radiotherapy, but surgery is used in some cases of extramedullary plasmacytoma. The skeletal forms frequently progress to multiple myeloma over the course of 2–4 years.
Due to their cellular similarity, plasmacytomas have to be differentiated from multiple myeloma. For SPB and extramedullary plasmacytoma the distinction is the presence of only one lesion (either in bone or soft tissue), normal bone marrow (<5% plasma cells), normal skeletal survey, absent or low paraprotein and no end organ damage.
Lymphomas in the strict sense are any neoplasms of the lymphatic tissues ("" + "") . The main classes are malignant neoplasms (that is, cancers) of the lymphocytes, a type of white blood cell that belongs to both the lymph and the blood and pervades both. Thus, lymphomas and leukemias are both tumors of the hematopoietic and lymphoid tissues, and as lymphoproliferative disorders, lymphomas and lymphoid leukemias are closely related, to the point that some of them are unitary disease entities that can be called by either name (for example, adult T-cell leukemia/lymphoma).
Several classification systems have existed for lymphoma, which use histological and other findings to divide lymphoma into different categories. The classification of a lymphoma can affect treatment and prognosis. Classification systems generally classify lymphoma according to:
- Whether or not it is a Hodgkin lymphoma
- Whether the cell that is replicating is a T cell or B cell
- The site from which the cell arises
Lymphoma can also spread to the central nervous system, often around the brain in the meninges, known as lymphomatous meningitis (LM).
Tumors of the hematopoietic and lymphoid tissues or haematopoietic and lymphoid malignancies are tumors that affect the blood, bone marrow, lymph, and lymphatic system. As those elements are all intimately connected through both the circulatory system and the immune system, a disease affecting one will often affect the others as well, making myeloproliferation and lymphoproliferation (and thus the leukemias and the lymphomas) closely related and often overlapping problems.
While uncommon in solid tumors, chromosomal translocations are a common cause of these diseases. This commonly leads to a different approach in diagnosis and treatment of haematological malignancies.
Haematological malignancies are malignant neoplasms ("cancer"), and they are generally treated by specialists in hematology and/or oncology. In some centers "Haematology/oncology" is a single subspecialty of internal medicine while in others they are considered separate divisions (there are also surgical and radiation oncologists). Not all haematological disorders are malignant ("cancerous"); these other blood conditions may also be managed by a hematologist.
Hematological malignancies may derive from either of the two major blood cell lineages: myeloid and lymphoid cell lines. The myeloid cell line normally produces granulocytes, erythrocytes, thrombocytes, macrophages and mast cells; the lymphoid cell line produces B, T, NK and plasma cells. Lymphomas, lymphocytic leukemias, and myeloma are from the lymphoid line, while acute and chronic myelogenous leukemia, myelodysplastic syndromes and myeloproliferative diseases are myeloid in origin.
A subgroup of them are more severe and are known as haematological malignancies (American spelling hematological malignancies) or blood cancer. They may also be referred to as liquid tumors.
At diagnosis, patients typically are in their 60s and present to their physician with advanced disease. About half have either fever, night sweats, or unexplained weight loss (over 10% of body weight). Enlarged lymph nodes (for example, a "bump" on the neck, armpits or groin) or splenomegaly are usually present. Bone marrow, liver and GI tract involvement occurs relatively early in the course of the disease.
Causes of paraproteinemia include the following:
- Leukemias and lymphomas of various types, but usually B-cell Non-Hodgkin lymphomas with a plasma cell component.
- Myeloma
- Plasmacytoma
- Lymphoplasmacytic lymphoma
- Idiopathic (no discernible cause): some of these will be revealed as leukemias or lymphomas over the years.
- Monoclonal gammopathy of undetermined significance
- Primary AL amyloidosis (light chains only)
The B-cell lymphomas are types of lymphoma affecting B cells. Lymphomas are "blood cancers" in the lymph nodes. They develop more frequently in older adults and in immunocompromised individuals.
B-cell lymphomas include both Hodgkin's lymphomas and most non-Hodgkin lymphomas. They are typically divided into low and high grade, typically corresponding to indolent (slow-growing) lymphomas and aggressive lymphomas, respectively. As a generalisation, indolent lymphomas respond to treatment and are kept under control (in remission) with long-term survival of many years, but are not cured. Aggressive lymphomas usually require intensive treatments, with some having a good prospect for a permanent cure.
Prognosis and treatment depends on the specific type of lymphoma as well as the stage and grade. Treatment includes radiation and chemotherapy. Early-stage indolent B-cell lymphomas can often be treated with radiation alone, with long-term non-recurrence. Early-stage aggressive disease is treated with chemotherapy and often radiation, with a 70-90% cure rate. Late-stage indolent lymphomas are sometimes left untreated and monitored until they progress. Late-stage aggressive disease is treated with chemotherapy, with cure rates of over 70%.
MGUS is a common, age-related medical condition characterized by an accumulation of bone marrow plasma cells derived from a single abnormal clone. Patients may be diagnosed with MGUS if they fulfill the following four criteria:
1. A monoclonal paraprotein band less than 30 g/L (< 3g/dL);
2. Plasma cells less than 10% on bone marrow examination;
3. No evidence of bone lesions, anemia, hypercalcemia, or renal insufficiency related to the paraprotein, and
4. No evidence of another B-cell proliferative disorder.
Mantle cell lymphoma (MCL) is a type of non-Hodgkin's lymphoma (NHL), comprising about 6% of NHL cases. There are only about 15,000 patients presently in the U.S.
MCL is a subtype of B-cell lymphoma, due to CD5 positive antigen-naive pregerminal center B-cell within the mantle zone that surrounds normal germinal center follicles. MCL cells generally over-express cyclin D1 due to a t(11:14) chromosomal translocation in the DNA. Specifically, the translocation is at t(11;14)(q13;q32).
There are numerous kinds of lymphomas involving B cells. The most commonly used classification system is the WHO classification, a convergence of more than one, older classification systems.
ATL is usually a highly aggressive non-Hodgkin's lymphoma with no characteristic histologic appearance except for a diffuse pattern and a mature T-cell phenotype. Circulating lymphocytes with an irregular nuclear contour (leukemic cells) are frequently seen. Several lines of evidence suggest that HTLV-1 causes ATL. This evidence includes the frequent isolation of HTLV-1 from patients with this disease and the detection of HTLV-1 proviral genome in ATL leukemic cells. ATL is frequently accompanied by visceral involvement, hypercalcemia, skin lesions, and lytic bone lesions. Bone invasion and osteolysis, features of bone metastases, commonly occur in the setting of advanced solid tumors, such as breast, prostate, and lung cancers, but are less common in hematologic malignancies. However, patients with HTLV-1–induced ATL and multiple myeloma are predisposed to the development of tumor-induced osteolysis and hypercalcemia. One of the striking features of ATL and multiple myeloma induced bone disease is that the bone lesions are predominantly osteolytic with little associated osteoblastic activity. In patients with ATL, elevated serum levels of IL-1, TGFβ, PTHrP, macrophage inflammatory protein (MIP-1α), and receptor activator of nuclear factor-κB ligand (RANKL) have been associated with hypercalcemia. Immunodeficient mice that received implants with leukemic cells from patients with ATL or with HTLV-1–infected lymphocytes developed hypercalcemia and elevated serum levels of PTHrP. Most patients die within one year of diagnosis.
Infection with HTLV-1, like infection with other retroviruses, probably occurs for life and can be inferred when antibody against HTLV-1 is detected in the serum.
Monoclonal B-cell lymphocytosis (MBL) is a condition that resembles chronic lymphocytic leukemia (CLL), but does not meet the criteria for CLL, and does not require treatment. However, CLL requiring treatment develops at the rate of 1.1% per year.
The definition of CLL includes >5,000 CLL-phenotype B-cell lymphocytes per cubic millimeter. Patients with <5,000 (but not 0) CLL-phenotype B-cell lymphocytes per mm³, and no symptoms of CLL, are diagnosed with MBL.
The term monoclonal means that all the B cells are derived from a single cell.
Adult T-cell leukemia/lymphoma (ATL or ATLL) is a rare cancer of the immune system's own T-cells.
Human T cell leukemia/lymphotropic virus type 1 (HTLV-1) is believed to be the cause of it, in addition to several other diseases.
This disease is known for an indolent clinical course and incidental discovery. The most common physical finding is moderate splenomegaly. B symptoms are seen in a third of cases, and recurrent infections due to the associated neutropenia are seen in almost half of cases.
Rheumatoid arthritis is commonly observed in people with T-LGLL, leading to a clinical presentation similar to Felty's syndrome. Signs and symptoms of anemia are commonly found, due to the association between T-LGLL and erythroid hypoplasia.
Diagnosis usually occurs at an early stage of disease progression.
Ann Arbor staging is used to classify tumors and symptoms. Stage IV disease is very rare.
For the analysis of a suspected "hematological malignancy", a complete blood count and blood film are essential, as malignant cells can show in characteristic ways on light microscopy. When there is lymphadenopathy, a biopsy from a lymph node is generally undertaken surgically. In general, a bone marrow biopsy is part of the "work up" for the analysis of these diseases. All specimens are examined microscopically to determine the nature of the malignancy. A number of these diseases can now be classified by cytogenetics (AML, CML) or immunophenotyping (lymphoma, myeloma, CLL) of the malignant cells.