Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
CLOVES syndrome is an extremely rare overgrowth syndrome, with complex vascular anomalies. CLOVES syndrome affects people with various symptoms, ranging from mild fatty soft-tissue tumors to vascular malformations encompassing the spine or internal organs. CLOVES syndrome is closely linked to other overgrowth disorders like proteus syndrome, Klippel–Trénaunay syndrome, Sturge–Weber syndrome, and hemihypertrophy, to name a few.
'CLOVES' is an acronym for:
- C is for congenital.
- L is for lipomatous, which means pertaining to or resembling a benign tumor made up of mature fat cells. Most CLOVES patients present with a soft fatty mass at birth, often visible on one or both sides of the back, legs and/or abdomen.
- O is for overgrowth, because there is an abnormal increase in the size of the body or a body part that is often noted at birth. Patients with CLOVES may have affected areas of their bodies that grow faster than in other people. Overgrowth of extremities (usually arms or legs) is seen, with large wide hands or feet, large fingers or toes, wide space between fingers, and asymmetry of body parts.
- V is for vascular malformations, which are blood vessel abnormalies. Patients with CLOVES have different venous, capillary, and lymphatic channels - typically capillary, venous and lymphatic malformations are known as "slow flow" lesions. Some patients with CLOVES have combined lesions (which are fast flow) and some have aggressive vascular malformation known as arteriovenous malformations (AVM). The effect of a vascular malformation varies per patient based on the type, size, and location of the malformation, and symptoms can vary.
- E is for Epidermal naevi, which are sharply-circumscribed chronic lesions of the skin, and benign. These are often flesh-colored, raised or warty.
- S is for Spinal/Skeletal Anomalies or scoliosis. Some patients with CLOVES have tethered spinal cord, vascular malformations in or around their spines, and other spinal differences. High-flow aggressive spinal lesions (like AVM) can cause serious neurological deficits/paralysis.
The syndrome was first recognised by Saap and colleagues who recognised the spectrum of symptoms from a set of seven patients. In this initial description the syndrome is named CLOVE syndrome. It is believed that the first description of a case of CLOVES syndrome was written by Hermann Friedberg, a German physician, in 1867.
PELVIS syndrome is a congenital condition characterized by perineal hemangioma, external genitalia malformations, lipomyelomeningocele, vesicorenal abnormalities, imperforate anus, and skin tag.
It is characterized by developmental defects including cryptophthalmos (where the eyelids fail to separate in each eye), and malformations in the genitals (such as micropenis, cryptorchidism or clitoromegaly). Congenital malformations of the nose, ears, larynx and renal system, as well as mental retardation, manifest occasionally. Syndactyly (fused fingers or toes) has also been noted.
A malformative syndrome (or malformation syndrome) is a recognizable pattern of congenital anomalies that are known or thought to be causally related (VIIth International Congress on Human Genetics).
Hemangiomas associated with PHACE Syndrome are usually small or not visible at birth, but are easier to see during the first days to weeks of life. They can grow rapidly. Hemangiomas linked with PHACE Syndrome tend to cover a large area of the face, head or neck, either as one lesion or as many single lesions.
Posterior fossa malformations–hemangiomas–arterial anomalies–cardiac defects–eye abnormalities–sternal cleft and supraumbilical raphe syndrome (also known as "PHACES Syndrome") is a cutaneous condition characterized by multiple congenital abnormalities.
PHACE syndrome should be considered in infants with large plaque-type facial hemangiomas. Children presenting with this dermatologic manifestation should receive careful ophthalmologic, cardiac, and neurologic assessment.
According to one study in infants with large hemangiomas, one-third have extracutaneous manifestations consistent with the diagnosis of PHACE syndrome. The most common are cerebrovascular and cardiovascular anomalies.
Aneuploidy is often fatal, but in this case there is "X-inactivation" where the effect of the additional gene dosage due to the presence of extra X chromosomes is greatly reduced.
Much like Down syndrome, the mental effects of 49,XXXXY syndrome vary. Impaired speech and behavioral problems are typical. Those with 49,XXXXY syndrome tend to exhibit infantile secondary sex characteristics with sterility in adulthood and have some skeletal anomalies. Skeletal anomalies include:
- Genu valgum
- Pes cavus
- Fifth finger clinodactyly
The effects also include:
- Cleft palate
- Club feet
- Respiratory conditions
- Short or/and broad neck
- Low birth weight
- Hyperextensible joints
- Short stature
- Narrow shoulders
- Coarse features in older age
- Hypertelorism
- Epicanthal folds
- Prognathism
- Gynecomastia (rare)
- Muscular hypotonia
- Hypoplastic genitalia
- Cryptorchidism
- Congenital heart defects
- A very round face in infancy
Newborn children with WAGR syndrome are soon noted to have aniridia. The clinical suspicion for WAGR may be increased with the presence of other genital anomalies, though genitourinary anomalies are not always present, particularly in girls.
In older children, clinical diagnosis of the syndrome can be made when aniridia and one of the other features are present. While aniridia is rarely absent in WAGR syndrome, cases have been reported without it. Chromosomal analysis is necessary for definitive diagnosis. Other common eye defects include cataracts and ptosis. About 50% of people develop Wilms' tumour.
Craniosynostosis–anal anomalies–porokeratosis syndrome (also known as "CAP syndrome") is a cutaneous condition inherited in an autosomal recessive fashion.
TBS patients may have the following symptoms:
- Abnormalities of the external ears (unusually large or small, unusually shaped, sometimes with sensorineural hearing loss or deafness due to lesions or dysfunctions of part of the internal ear or its nerve tracts and centers or conductive hearing loss from the external or middle ear), dysplastic ears, lop ear (over-folded ear helix), preauricular tags or pits (a rudimentary tag of ear tissue typically located just in front of the ear).
- Anorectal malformations, including imperforate anus/absence of an anal opening, rectovaginal fistula, anal stenosis, unusually placed anus.
- Renal abnormalities, sometimes leading to impaired renal function or renal failure, including hypoplastic kidneys (underdeveloped), multicystic kidneys, dyspastic kidneys.
- Heart abnormalities, including tetralogy of fallot and defects of the ventricular septum.
- Hand and foot abnormalities, such as hypoplastic thumbs, fingerlike thumbs, syndactyly (webbed fingers/toes), fusion of the wrist bones, overlapping foot and/or toe bones.
Learning difficulties have been reported in some children with TBS. For others, intelligence is within the normal range.
These abnormalities, which are present prenatally, can range from minor to severe, and as with similar disorders, most individuals with this condition have some, but not all, of these traits.
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
First arch syndromes are congenital defects caused by a failure of neural crest cells to migrate into the first pharyngeal arch. They can produce facial anomalies. Examples of first arch syndromes include Treacher Collins syndrome and Pierre Robin syndrome.
Most people with this condition have extra fingers and/or toes (polydactyly), and the skin between some fingers or toes may be fused (cutaneous syndactyly). An abnormal growth in the brain called a hypothalamic hamartoma is characteristic of this disorder. In many cases, these growths do not cause any medical problems; however, some hypothalamic hamartomas lead to seizures or hormone abnormalities that can be life-threatening in infancy. Other features of Pallister–Hall syndrome include a malformation of the airway called a bifid epiglottis, laryngeal cleft, an obstruction of the anal opening (imperforate anus), and kidney abnormalities. Although the signs and symptoms of this disorder vary from mild to severe, only a small percentage of affected people have serious complications.
Usually associated with diaphragmatic hernia,
pulmonary hypoplasia,
imperforate anus,
micropenis,
bilateral cryptorchidism,
cerebral ventricular dilation,
camptodactyly,
agenesis of sacrum,
low-set ear.
- Fryns et al. (1979) reported 2 stillborn sisters with a multiple congenital anomaly syndrome characterized by coarse facies with cloudy corneae, diaphragmatic defects, absence of lung lobulation, and distal limb deformities. A sporadic case was reported by Goddeeris et al. (1980). Fitch (1988) claimed that she and her colleagues were the first to describe this disorder. In 1978 they reported a single infant, born of second-cousin parents, who had absent left hemidiaphragm, hydrocephalus, arhinencephaly, and cardiovascular anomalies.
- Lubinsky et al. (1983) reported a brother and sister with Fryns syndrome who both died in the neonatal period. Facial anomalies included broad nasal bridge, microretrognathia, abnormal helices, and cleft palate. Other features included distal digital hypoplasia, lung hypoplasia, and urogenital abnormalities, including shawl scrotum, uterus bicornis, and renal cysts. They were discordant for diaphragmatic hernia, cleft lip, and Dandy–Walker anomaly.
- Meinecke and Fryns (1985) reported an affected child; consanguinity of the parents supported recessive inheritance. They noted that a diaphragmatic defect had been described in 4 of the 5 reported cases and lung hypoplasia in all. Young et al. (1986) reported a sixth case. The male infant survived for 12 days. These authors listed corneal clouding, camptodactyly with hypoplastic nails, and abnormalities of the diaphragm as cardinal features.
- Samueloff et al. (1987) described a family in which all 4 children had Fryns syndrome and neonatal mortality. Features included hypoplastic lungs, cleft palate, retrognathia, micrognathism, small thorax, diaphragmatic hernia, distal limb hypoplasia, and early onset of polyhydramnios with premature delivery. Schwyzer et al. (1987) described an affected infant whose parents were second cousins.
- Moerman et al. (1988) described infant brother and sister with the syndrome of diaphragmatic hernia, abnormal face, and distal limb anomalies. Both died shortly after birth with severe respiratory distress. Ultrasonography demonstrated fetal hydrops, diaphragmatic hernia, and striking dilatation of the cerebral ventricles in both infants. Post-mortem examination showed Dandy–Walker malformation, ventricular septal defect, and renal cystic dysplasia.
- Cunniff et al. (1990) described affected brothers and 3 other cases, bringing the total reported cases of Fryns syndrome to 25. One of the affected brothers was still alive at the age of 24 months. Bilateral diaphragmatic hernias had been repaired on the first day of life. He required extracorporeal membrane oxygenation therapy for 5 days and oscillatory therapy for 3 months. Ventriculoperitoneal shunt was required because of slowly progressive hydrocephalus. Scoliosis was associated with extranumerary vertebral bodies and 13 ribs. Because of delayed gastric emptying, a gastrostomy tube was inserted. In addition, because of persistent chylothorax, he underwent decortication of the right lung and oversewing of the thoracic duct.
- Kershisnik et al. (1991) suggested that osteochondrodysplasia is a feature of Fryns syndrome.
- Willems et al. (1991) suggested that a diaphragmatic hernia is not a necessary feature of Fryns syndrome. They described a child with all the usual features except for diaphragmatic hernia; the diaphragm was reduced to a fibrous web with little muscular component. Bartsch et al. (1995) presented 2 unrelated cases with a typical picture of Fryns syndrome but without diaphragmatic hernia. One of these patients was alive at the age of 14 months, but was severely retarded. Bamforth et al. (1987) and Hanssen et al. (1992) also described patients with this syndrome who survived the neonatal period. In the report of Hanssen et al. (1992), 2 older sibs had died in utero. The reports suggested that survival beyond the neonatal period is possible when the diaphragmatic defect and lung hypoplasia are not present. However, mental retardation has been present in all surviving patients.
- Vargas et al. (2000) reported a pair of monozygotic twins with Fryns syndrome discordant for severity of diaphragmatic defect. Both twins had macrocephaly, coarse facial appearance, hypoplasia of distal phalanges, and an extra pair of ribs. Twin A lacked an apparent diaphragmatic defect, and at 1 year of age had mild developmental delay. Twin B had a left congenital diaphragmatic hernia and died neonatally. The authors suggested that absence of diaphragmatic defect in Fryns syndrome may represent a subpopulation of more mildly affected patients.
- Aymé, "et al." (1989) described 8 cases of Fryns syndrome in France. The most frequent anomalies were diaphragmatic defects, lung hypoplasia, cleft lip and palate, cardiac defects, including septal defects and aortic arch anomalies, renal cysts, urinary tract malformations, and distal limb hypoplasia. Most patients also had hypoplastic external genitalia and anomalies of internal genitalia, including bifid or hypoplastic uterus or immature testes. The digestive tract was also often abnormal; duodenal atresia, pyloric hyperplasia, malrotation and common mesentery were present in about half of the patients. When the brain was examined, more than half were found to have Dandy–Walker anomaly and/or agenesis of the corpus callosum. A few patients demonstrated cloudy cornea. Histologically, 2 of 3 patients showed retinal dysplasia with rosettes and gliosis of the retina, thickness of the posterior capsule of the lens, and irregularities of Bowman membrane.
- Alessandri et al. (2005) reported a newborn from the Comores Islands with clinical features of Fryns syndrome without diaphragmatic hernia. They noted that diaphragmatic hernia is found in more than 80% of cases and that at least 13 other cases had been reported with an intact diaphragm.
- In a postneonatal survivor of Fryns syndrome, Riela et al. (1995) described myoclonus appearing shortly after birth, which was well controlled on valproate. Progressive cerebral and brainstem atrophy was noted on serial MRIs made at 3 months and after 6 months of age.
- Van Hove et al. (1995) described a boy with Fryns syndrome who survived to age 3 years and reviewed the outcome of other reported survivors (approximately 14% of reported cases). Survivors tended to have less frequent diaphragmatic hernia, milder lung hypoplasia, absence of complex cardiac malformation, and severe neurologic impairment. Their patient had malformations of gyration and sulcation, particularly around the central sulcus, and hypoplastic optic tracts beyond the optic chiasm associated with profound mental retardation.
- Fryns and Moerman (1998) reported a second-trimester male fetus with Fryns syndrome and midline scalp defects. The authors stated that the finding of a scalp defect in Fryns syndrome confirms that it is a true malformation syndrome with major involvement of the midline structures.
- Ramsing et al. (2000) described 2 sibships with 4 fetuses and 1 preterm baby of 31 weeks' gestation affected by a multiple congenital disorder suggestive of Fryns syndrome. In addition to the diaphragmatic defects and distal limb anomalies, they presented with fetal hydrops, cystic hygroma, and multiple pterygias. Two affected fetuses in 1 family showed severe craniofacial abnormalities with bilateral cleft lip and palate and cardiovascular malformation.
- Arnold et al. (2003) reported a male fetus with Fryns syndrome and additional abnormalities, in particular, multiple midline developmental defects including gastroschisis, central nervous system defects with left arrhinencephaly and cerebellar hypoplasia, midline cleft of the upper lip, alveolar ridge, and maxillary bone, and cleft nose with bilateral choanal atresia.
- Pierson et al. (2004) reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of them. They also described 3 new patients with Fryns syndrome, 1 of whom demonstrated unilateral microphthalmia and cloudy cornea.
- Slavotinek et al. (2005) noted that Fryns syndrome may be the most common autosomal recessive syndrome in which congenital diaphragmatic hernia (see DIH2, 222400) is a cardinal feature. The autosomal recessive inheritance in Fryns syndrome contrasts with the sporadic inheritance for most patients with DIH.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Different areas of deletion are associated with different symptoms. Deletions from the centromere to 13q32 or any deletions including the 13q32 band are associated with slow growth, intellectual disability, and congenital malformations. Deletions from 13q33 to the end of the chromosome are associated with intellectual disability. Intellectual disabilities range from very mild to very severe, and can co-occur with behavioral disorders and/or autism spectrum disorders.
At birth, the main symptoms include low weight (due to intrauterine growth restriction), hypotonia, and feeding difficulties. Infants may also have cleft palate.
13q deletion syndrome gives a characteristic appearance to affected individuals, potentially including microphthalmia (small eyes), hypertelorism (wide-set eyes), thin forehead, high palate, underdeveloped midface, small mouth, small nose, broad, flat nasal bridge, short neck, low hairline, irregular or wrongly positioned teeth, low-set ears, micrognathia (small jaw), tooth enamel defects, short stature, microcephaly (small head), a prominent, long philtrum, and earlobes turned inwards.
Congenital heart disease is associated with 13q deletion syndrome. Common defects include atrial septal defect, tetralogy of Fallot, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, and coarctation of the aorta. Defects of the endocrine system, digestive system, and genitourinary system are also common. These include underdevelopment or agenesis of the pancreas, adrenal glands, thymus, gallbladder, and thyroid; Hirschsprung's disease; gastric reflux, imperforate anus, retention testis, ectopic kidney, renal agenesis, and hydronephrosis.
A variety of brain abnormalities are also associated with 13q deletion. They can include epilepsy, craniosynostosis (premature closing of the skull bones), spastic diplegia, cerebral hypotrophy, underdevelopment or agenesis of the corpus callosum, cerebellar hypoplasia, deafness, and, rarely, hydrocephalus, Dandy–Walker syndrome, and spina bifida. The eyes can be severely damaged and affected individuals may be blind. They may also have coloboma of the iris or choroid, strabismus, nystagmus, glaucoma, or cataracts.
Other skeletal malformations are found with 13q deletion syndrome, including syndactyly, clubfoot, clinodactyly, and malformations of the vertebrae and/or thumbs.
Deletions that include the 13q32 band, which contains the brain development gene ZIC2, are associated with holoprosencephaly; they are also associated with hand and foot malformations. Deletions that include the 13q14 band, which contains the tumor suppressor gene Rb, are associated with a higher risk of developing retinoblastoma, which is more common in XY children. Deletion of the 13q33.3 band is associated with hypospadias. Other genes in the potentially affected region include NUFIP1, HTR2A, PDCH8, and PCDH17.
Fraser syndrome (also known as Meyer-Schwickerath's syndrome, Fraser-François syndrome, or Ullrich-Feichtiger syndrome) is an autosomal recessive congenital disorder. Fraser syndrome is named for the geneticist George R. Fraser, who first described the syndrome in 1962.
WAGR syndrome (also known as WAGR complex, Wilms tumour-aniridia syndrome, aniridia-Wilms tumour syndrome) is a rare genetic syndrome in which affected children are predisposed to develop Wilms tumour (a tumour of the kidneys), Aniridia (absence of the coloured part of the eye, the iris), Genitourinary anomalies, and Range of abilities. The G is sometimes instead given as "gonadoblastoma," since the genitourinary anomalies can include tumours of the gonads (testes or ovaries).
A subset of WAGR syndrome patients shows severe childhood obesity; the acronym WAGRO (O for obesity) has been used to describe this category.
The condition, first described by Miller et al. in 1964 in its association with other congenital malformations, results from a deletion on chromosome 11 resulting in the loss of several genes. As such, it is one of the best studied examples of a condition caused by loss of neighbouring (contiguous) genes.
As noted above, the hypothalamic hamartoma can cause seizures.
The most common types of seizures that occur are known as gelastic epilepsy.
The term "gelastic" originates from the Greek word ""gelos" which means "laughter". Seizures may begin at any age but usually before three or four years of age. The seizures usually start with laughter and the laughter is often described as being "hollow" or "empty" and not very pleasant. The laughter occurs suddenly, comes on for no obvious reason and is usually completely out of place. The most common areas of the brain which give rise to gelastic seizures are the hypothalamus (a small but extremely important structure deep in the centre of the brain), the temporal lobes and the frontal lobes. If the child has gelastic seizures and precocious puberty, then it is likely that the child will be found to have a hypothalamic hamartoma (a hamartoma in the hypothalamus part of the brain).
Genitopatellar syndrome is a rare condition characterized by genital abnormalities, missing or underdeveloped kneecaps (patellae), intellectual disability, and abnormalities affecting other parts of the body.
Genitopatellar syndrome is also associated with delayed development and intellectual disability, which are often severe. Affected individuals may have an unusually small head (microcephaly) and structural brain abnormalities, including underdeveloped or absent tissue connecting the left and right halves of the brain (agenesis of the corpus callosum).
X-linked type I Opitz G/BBB Syndrome is diagnosed on clinical findings, but those findings can vary greatly: even within the same family. Manifestations of X-linked type I are classified in the frequent/major findings and minor findings that are found in less than 50% of individuals.
The three major findings that suggest a person has X-linked Type I Opitz G/BBB Syndrome:
1. Ocular hypertelorism (~100% cases)
2. Hypospadias (85-90% cases)
3. Laryngotracheoesophageal abnormalities (60-70%)
Minor findings found in less than 50% of individuals:
1. Developmental delay (especially intellectually)
2. Cleft lip/palate
3. Congenital heart defects
4. Imperforate (blocked) anus
5. Brain defects (especially corpus callosum)
In 1989, Hogdall used ultrasonographs to diagnose X-linked Type I Opitz G/BBB Syndrome after 19 weeks of pregnancy, by identifying hypertelorism (widely-spaced eyes) and hypospadias (irregular urinary tract openings in the penis).
There is also molecular genetic testing available to identify mutations leading to Opitz G/BBB Syndrome. X-linked Type I testing must be done on MID1, since this is the only gene that is known to cause Type I Opitz G/BBB Syndrome. Two different tests can be performed: sequence analysis and deletion/duplication analysis. In the sequence analysis a positive result would detect 15-50% of the DNA sequence mutated, while a deletion/duplication positive result would find deletion or duplication of one or more exons of the entire MID1 gene.
FACES syndrome is a syndrome of unique facial features, anorexia, cachexia, eye and skin anomalies.
It is a rare disease and estimated to occur in less than 1 in 1 million people.
49,XXXXY syndrome is an extremely rare aneuploidic sex chromosomal abnormality. It occurs in approximately 1 out of 85,000 to 100,000 males.
It is characterized by variable reductions in serum immunoglobulin levels which cause most ICF patients to succumb to infectious diseases before adulthood. ICF syndrome patients exhibit facial anomalies which include hypertelorism, low-set ears, epicanthal folds and macroglossia.
FG syndrome's major clinical features include intellectual disability, usually severe; hyperactive behavior, often with an outgoing personality; severe constipation, with or without structural anomalies in the anus such as imperforate anus; macrocephaly; severe hypotonia; a characteristic facial appearance due to hypotonia, giving a droopy, "open-mouthed" expression, a thin upper lip, a full or pouting lower lip, and partial or complete loss of the corpus callosum. About a third of reported cases of individuals with FG syndrome die in infancy, usually due to respiratory infection; premature death is rare after infancy.