Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Impaired fasting glucose is often without any signs or symptoms, other than higher than normal glucose levels being detected in an individual's fasting blood sample. There may be signs and symptoms associated with elevated blood glucose, though these are likely to be minor, with significant symptoms suggestive of complete progression to type 2 diabetes. Such symptoms include:
- Increased thirst
- Increased urination, especially waking up in the night to urinate
- Tiredness and fatigue
- Blurred vision
- Slow healing of wounds
- Altered sensation, such as numbness or tingling, particularly of the hands and feet
- Recurrent, and difficult to clear infections, particularly of the urinary tract
There are often no visible symptoms of hyperinsulinemia unless hypoglycaemia (low blood sugar) is present.
Some patients may experience a variety of symptoms when hypoglycaemia is present, including:
- Temporary muscle weakness
- Brain fog
- Fatigue
- Temporary thought disorder, or inability to concentrate
- Visual problems such as blurred vision or double vision
- Headaches
- Shaking/Trembling
- Thirst
If a person experiences any of these symptoms, a visit to a qualified medical practitioner is advised, and diagnostic blood testing may be required.
The degree of hyperglycemia can change over time depending on the metabolic cause, for example, impaired glucose tolerance or fasting glucose, and it can depend on treatment. Temporary hyperglycemia is often benign and asymptomatic. Blood glucose levels can rise well above normal and cause pathological and functional changes for significant periods without producing any permanent effects or symptoms. During this asymptomatic period, an abnormality in carbohydrate metabolism can occur which can be tested by measuring plasma glucose. However, chronic hyperglycemia at above normal levels can produce a very wide variety of serious complications over a period of years, including kidney damage, neurological damage, cardiovascular damage, damage to the retina or damage to feet and legs. Diabetic neuropathy may be a result of long-term hyperglycemia. Impairment of growth and susceptibility to certain infection can occur as a result of chronic hyperglycemia.
Acute hyperglycemia involving glucose levels that are extremely high is a medical emergency and can rapidly produce serious complications (such as fluid loss through osmotic diuresis). It is most often seen in persons who have uncontrolled insulin-dependent diabetes.
The following symptoms may be associated with acute or chronic hyperglycemia, with the first three composing the classic hyperglycemic triad:
- Polyphagia – frequent hunger, especially pronounced hunger
- Polydipsia – frequent thirst, especially excessive thirst
- Polyuria – increased volume of urination (not an increased frequency for urination)
- Blurred vision
- Fatigue
- Restlessness
- Weight loss
- Poor wound healing (cuts, scrapes, etc.)
- Dry mouth
- Dry or itchy skin
- Tingling in feet or heels
- Erectile dysfunction
- Recurrent infections, external ear infections (swimmer's ear)
- Cardiac arrhythmia
- Stupor
- Coma
- Seizures
Frequent hunger without other symptoms can also indicate that blood sugar levels are too low. This may occur when people who have diabetes take too much oral hypoglycemic medication or insulin for the amount of food they eat. The resulting drop in blood sugar level to below the normal range prompts a hunger response. This hunger is not usually as pronounced as in Type I diabetes, especially the juvenile onset form, but it makes the prescription of oral hypoglycemic medication difficult to manage.
Polydipsia and polyuria occur when blood glucose levels rise high enough to result in excretion of excess glucose via the kidneys, which leads to the presence of glucose in the urine. This produces an osmotic diuresis.
Signs and symptoms of diabetic ketoacidosis may include:
- Ketoacidosis
- Kussmaul hyperventilation: deep, rapid breathing
- Confusion or a decreased level of consciousness
- Dehydration due to glycosuria and osmotic diuresis
- Acute hunger and/or thirst
- 'Fruity' smelling breath odor
- Impairment of cognitive function, along with increased sadness and anxiety
Hyperglycemia caused a decrease in cognitive performance, specifically in processing speed, and executive function and performance. Decreased cognitive performance may cause forgetfulness and concentration loss
As impaired fasting glucose is considered a precursor condition for type 2 diabetes, it shares the same environmental and genetic risk factors.
Prediabetes typically has no distinct signs or symptoms except the sole sign of high blood sugar. Patients should monitor for signs and symptoms of type 2 diabetes mellitus. These include the following:
- Constant hunger
- Unexplained weight loss
- Weight gain
- Flu-like symptoms, including weakness and fatigue
- Blurred vision
- Slow healing of cuts or bruises
- Tingling or loss of feeling in hands or feet
- Recurring gum or skin infections
- Recurring vaginal or bladder infections
- A high BMI (Body Mass Index) result
Cats will generally show a gradual onset of the disease over a few weeks or months, and it may escape notice for even longer.
The first outward symptoms are a sudden weight loss (or occasionally gain), accompanied by excessive drinking and urination; for example, cats can appear to develop an obsession with water and lurk around faucets or water bowls. Appetite is suddenly either ravenous (up to three-times normal) or absent. These symptoms arise from the body being unable to use glucose as an energy source.
A fasting glucose blood test will normally be suggestive of diabetes at this point. The same home blood test monitors used in humans are used on cats, usually by obtaining blood from the ear edges or paw pads. As the disease progresses, ketone bodies will be present in the urine, which can be detected with the same urine strips as in humans.
In the final stages, the cat starts wasting and the body will breaking down its own fat and muscle to survive. Lethargy or limpness, and acetone-smelling breath are acute symptoms of ketoacidosis and/or dehydration and is a medical emergency.
Untreated, diabetes leads to coma and then death.
In untreated hyperglycemia, a condition called ketoacidosis may develop because decreased insulin levels increase the activity of hormone sensitive lipase. The degradation of triacylglycerides by hormone-sensitive lipase produces free fatty acids that are eventually converted to acetyl-coA by beta-oxidation.
Ketoacidosis is a life-threatening condition which requires immediate treatment. Symptoms include: shortness of breath, breath that smells fruity (such as pear drops), nausea and vomiting, and very dry mouth.
Chronic hyperglycemia (high blood sugar) injures the heart in patients without a history of heart disease or diabetes and is strongly associated with heart attacks and death in subjects with no coronary heart disease or history of heart failure.
Also, life-threatening consequences of hyperglycemia is nonketotic hyperosmolar syndrome.
Impaired glucose tolerance (IGT) is a pre-diabetic state of dysglycemia, that is associated with insulin resistance and increased risk of cardiovascular pathology. IGT may precede type 2 diabetes mellitus by many years. IGT is also a risk factor for mortality.
Diabetic hypoglycemia can be mild, recognized easily by the patient, and reversed with a small amount of carbohydrates eaten or drunk, or it may be severe enough to cause unconsciousness requiring intravenous dextrose or an injection of glucagon. Severe hypoglycemic unconsciousness is one form of diabetic coma. A common medical definition of severe hypoglycemia is "hypoglycemia severe enough that the person needs assistance in dealing with it". A co-morbidity is the issue of hypoglycemia unawareness. Recent research using machine learning methods have proved to be successful in predicting such severe hypoglycemia episodes.
Symptoms of diabetic hypoglycemia, when they occur, are those of hypoglycemia: neuroglycopenic, adrenergic, and abdominal. Symptoms and effects can be mild, moderate or severe, depending on how low the glucose falls and a variety of other factors. It is rare but possible for diabetic hypoglycemia to result in brain damage or death. Indeed, an estimated 2-4% of deaths of people with type 1 diabetes mellitus have been attributed to hypoglycemia.
In North America a mild episode of diabetic hypoglycemia is sometimes termed a "low" or an "insulin reaction," and in Europe a "hypo", although all of these terms are occasionally used interchangeably in North America, Europe, Australia and New Zealand. A severe episode is sometimes also referred to as "insulin shock".
In a counter-intuitive manifestation, hypoglycemia can trigger a Somogyi effect, resulting in a rebounding high blood sugar or hyperglycemia.
Hypoglycemic symptoms and manifestations can be divided into those produced by the counterregulatory hormones (epinephrine/adrenaline and glucagon) triggered by the falling glucose, and the neuroglycopenic effects produced by the reduced brain sugar.
- Shakiness, anxiety, nervousness
- Palpitations, tachycardia
- Sweating, feeling of warmth (sympathetic muscarinic rather than adrenergic)
- Pallor, coldness, clamminess
- Dilated pupils (mydriasis)
- Hunger, borborygmus
- Nausea, vomiting, abdominal discomfort
- Headache
A commonly used "number" to define the lower limit of normal glucose is 70 mg/dl (3.9 mmol/l), though in someone with diabetes, hypoglycemic symptoms can sometimes occur at higher glucose levels, or may fail to occur at lower. Some textbooks for nursing and pre-hospital care use the range 80 mg/dl to 120 mg/dl (4.4 mmol/l to 6.7 mmol/l). This variability is further compounded by the imprecision of glucose meter measurements at low levels, or the ability of glucose levels to change rapidly.
Too little insulin over time can cause tissue starvation (as glucose can't reach the brain or body). In combination with dehydration, fasting, infection, or other body stresses, this can turn over a few hours into diabetic ketoacidosis, a medical emergency with a high fatality rate, that cannot be treated at home. Many undiagnosed diabetic cats first come to the vet in this state, since they haven't been receiving insulin. Symptoms include lethargy, acetone or fruity smell on breath, shortness of breath, high blood sugar, huge thirst drive. Emergency care includes fluid therapy, insulin, management of presenting symptoms and 24-hour hospitalization.
Symptoms vary according to individuals' hydration level and sensitivity to the rate and/or magnitude of decline of their blood glucose concentration.
A crash is usually felt within four hours or less of heavy carbohydrate consumption. Symptoms of reactive hypoglycemia include:
- double vision or blurry vision
- unclear thinking
- insomnia
- heart palpitation or fibrillation
- fatigue
- dizziness
- light-headedness
- sweating
- headaches
- depression
- nervousness
- muscle twitches
- irritability
- tremors
- flushing
- craving sweets
- increased appetite
- rhinitis
- nausea, vomiting
- panic attack
- numbness/coldness in the extremities
- confusion
- irrationality
- bad temper
- paleness
- cold hands
- disorientation
- the need to sleep or 'crash'
- coma can be a result in severe untreated episodes
The majority of these symptoms, often correlated with feelings of hunger, mimic the effect of inadequate sugar intake as the biology of a crash is similar in itself to the body’s response to low blood sugar levels following periods of glucose deficiency.
Manifestations of hyperinsulinemic hypoglycemia vary by age and severity of the hypoglycemia. In general, most signs and symptoms can be attributed to (1) the effects on the brain of insufficient glucose (neuroglycopenia) or (2) to the adrenergic response of the autonomic nervous system to hypoglycemia. A few miscellaneous symptoms are harder to attribute to either of these causes. In most cases, all effects are reversed when normal glucose levels are restored.
There are uncommon cases of more persistent harm, and rarely even death due to severe hypoglycemia of this type. One reason hypoglycemia due to excessive insulin can be more dangerous is that insulin lowers the available amounts of most alternate brain fuels, such as ketones. Brain damage of various types ranging from stroke-like focal effects to impaired memory and thinking can occur. Children who have prolonged or recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to their brains and may be developmentally delayed.
Ketotic hypoglycemia more commonly refers to a common but mysterious "disease" of recurrent hypoglycemic symptoms with ketosis in young children. The cause and the homogeneity of the condition remain uncertain, but a characteristic presentation, precipitating factors, diagnostic test results, treatment, and natural history can be described. It remains one of the more common causes of hypoglycemia in the age range.
Hyperinsulinemic hypoglycemia describes the condition and effects of low blood glucose caused by excessive insulin. Hypoglycemia due to excess insulin is the most common type of serious hypoglycemia. It can be due to endogenous or injected insulin.
Oxyhyperglycemia is a special type of impaired glucose tolerance characterized by a rapid and transient hyperglycemia (i.e. rise in blood glucose) spike after an oral intake of glucose, the peak of this spike being high enough to cause transient, symptom free glycosuria (i.e. detectable glucose in urine), but this hyperglycemia reverses rapidly and may even go to hypoglycemia in the later phase. This sharp downstroke overshooting towards hypoglycemia distinguishes this pathologic phenomenon from the artificial hyperglycemia inducible by an intravenous bolus dose of a large amount of glucose solution. Early dumping syndrome patients usually have oxyhyperglycemia associated with any meal or OGTT.
The Greek root "oxy" means "sharp" or "pointy". The OGTT curve in this condition appears sharp and somewhat pointy (at least relative to the other forms of hyperglycemia)- hence this name.
Dorlands dictionary defines oxyhyperglycemia as:
A blood level of approximately 180 mg/dL is the renal glucose threshold below which all glucose is reabsorbed from glomerular filtrate. But at blood concentrations above the renal threshold sugar starts appearing in the urine.
Oxyhyperglycemia, like other forms of Impaired glucose tolerance has also been suggested to be a prediabetic condition
Diabetic coma is a medical emergency in which a person with diabetes mellitus is comatose (unconscious) because of one of the acute complications of diabetes:
1. Severe diabetic hypoglycemia
2. Diabetic ketoacidosis advanced enough to result in unconsciousness from a combination of severe hyperglycemia, dehydration and shock, and exhaustion
3. Hyperosmolar nonketotic coma in which extreme hyperglycemia and dehydration alone are sufficient to cause unconsciousness.
Possible causes include:
- Neoplasm
- Pancreatic cancer
- Polycystic ovary syndrome (PCOS)
- Trans fats
These depend on poorly understood variations in individual biology and consequently may not be found with all people diagnosed with insulin resistance.
- Increased hunger
- Lethargy (tiredness)
- Brain fogginess and inability to focus
- High blood sugar
- Weight gain, fat storage, difficulty losing weight – for most people, excess weight is from high subcutaneous fat storage; the fat in IR is generally stored in and around abdominal organs in both males and females; it is currently suspected that hormones produced in that fat are a precipitating cause of insulin resistance
- Increased blood cholesterol levels
- Increased blood pressure; many people with hypertension are either diabetic or pre-diabetic and have elevated insulin levels due to insulin resistance; one of insulin's effects is to control arterial wall tension throughout the body
According to the criteria of the World Health Organization and the American Diabetes Association, impaired glucose tolerance is defined as:
- two-hour glucose levels of 140 to 199 mg per dL (7.8 to 11.0 mmol/l) on the 75-g oral glucose tolerance test. A patient is said to be under the condition of IGT when he/she has an intermediately raised glucose level after 2 hours, but less than the level that would qualify for type 2 diabetes mellitus. The fasting glucose may be either normal or mildly elevated.
From 10 to 15 percent of adults in the United States have impaired glucose tolerance or impaired fasting glucose.
Not all of the above manifestations occur in every case of hypoglycemia. There is no consistent order to the appearance of the symptoms, if symptoms even occur. Specific manifestations may also vary by age, by severity of the hypoglycemia and the speed of the decline. In young children, vomiting can sometimes accompany morning hypoglycemia with ketosis. In older children and adults, moderately severe hypoglycemia can resemble mania, mental illness, drug intoxication, or drunkenness. In the elderly, hypoglycemia can produce focal stroke-like effects or a hard-to-define malaise. The symptoms of a single person may be similar from episode to episode, but are not necessarily so and may be influenced by the speed at which glucose levels are dropping, as well as previous incidents.
In newborns, hypoglycemia can produce irritability, jitters, myoclonic jerks, cyanosis, respiratory distress, apneic episodes, sweating, hypothermia, somnolence, hypotonia, refusal to feed, and seizures or "spells." Hypoglycemia can resemble asphyxia, hypocalcemia, sepsis, or heart failure.
In both young and old patients, the brain may habituate to low glucose levels, with a reduction of noticeable symptoms despite neuroglycopenic impairment. In insulin-dependent diabetic patients this phenomenon is termed "hypoglycemia unawareness" and is a significant clinical problem when improved glycemic control is attempted. Another aspect of this phenomenon occurs in type I glycogenosis, when chronic hypoglycemia before diagnosis may be better tolerated than acute hypoglycemia after treatment is underway.
Hypoglycemic symptoms can also occur when one is sleeping. Examples of symptoms during sleep can include damp bed sheets or clothes from perspiration. Having nightmares or the act of crying out can be a sign of hypoglycemia. Once the individual is awake they may feel tired, irritable, or confused and these may be signs of hypoglycemia as well.
In nearly all cases, hypoglycemia that is severe enough to cause seizures or unconsciousness can be reversed without obvious harm to the brain. Cases of death or permanent neurological damage occurring with a single episode have usually involved prolonged, untreated unconsciousness, interference with breathing, severe concurrent disease, or some other type of vulnerability. Nevertheless, brain damage or death has occasionally resulted from severe hypoglycemia.
Research in healthy adults shows that mental efficiency declines slightly but measurably as blood glucose falls below 3.6 mM (65 mg/dL). Hormonal defense mechanisms (adrenaline and glucagon) are normally activated as it drops below a threshold level (about 55 mg/dL (3.0 mM) for most people), producing the typical hypoglycemic symptoms of shakiness and dysphoria. Obvious impairment may not occur until the glucose falls below 40 mg/dL (2.2 mM), and many healthy people may occasionally have glucose levels below 65 in the morning without apparent effects. Since the brain effects of hypoglycemia, termed neuroglycopenia, determine whether a given low glucose is a "problem" for that person, most doctors use the term "hypoglycemia" only when a moderately low glucose level is accompanied by symptoms or brain effects.
Determining the presence of both parts of this definition is not always straightforward, as hypoglycemic symptoms and effects are vague and can be produced by other conditions; people with recurrently low glucose levels can lose their threshold symptoms so that severe neuroglycopenic impairment can occur without much warning, and many measurement methods (especially glucose meters) are imprecise at low levels.
It may take longer to recover from severe hypoglycemia with unconsciousness or seizure even after restoration of normal blood glucose. When a person has not been unconscious, failure of carbohydrate to reverse the symptoms in 10–15 minutes increases the likelihood that hypoglycemia was not the cause of the symptoms. When severe hypoglycemia has persisted in a hospitalized person, the amount of glucose required to maintain satisfactory blood glucose levels becomes an important clue to the underlying etiology. Glucose requirements above 10 mg/kg/minute in infants, or 6 mg/kg/minute in children and adults are strong evidence for hyperinsulinism. In this context this is referred to as the "glucose infusion rate" (GIR). Finally, the blood glucose response to glucagon given when the glucose is low can also help distinguish among various types of hypoglycemia. A rise of blood glucose by more than 30 mg/dl (1.70 mmol/l) suggests insulin excess as the probable cause of the hypoglycemia.
The typical patient with ketotic hypoglycemia is a young child between the ages of 10 months and 4 years. Episodes nearly always occur in the morning after an overnight fast, often one that is longer than usual. Symptoms include those of neuroglycopenia, ketosis, or both. The neuroglycopenic symptoms usually include lethargy and malaise, but may include unresponsiveness or seizures. The principal symptoms of ketosis are anorexia, abdominal discomfort, and nausea, sometimes progressing to vomiting.
If severe, parents usually take the child to a local emergency department, where blood is drawn. The glucose is usually found to be between 35 and 60 mg/dl (1.8-3.1 mMol/L). The total CO is usually somewhat low as well, (14-19 mMol/L is typical), and if urine is obtained, high levels of ketones are discovered. Ketones can also be measured in the blood at the bedside (Medisense glucometer). Other routine tests are normal. If given intravenous fluids with saline and dextrose, the child improves dramatically and is usually restored to normal health within a few hours. These symptoms are normally seen because of the child being unadapted to using fat as energy, typically when the child's daily glucose intake might be too high (more than 50g/day for a child). This is also associated with fluctuant glycemia throughout the day.
A first episode is usually attributed to a viral infection or acute gastroenteritis. However, in most of these children one or more additional episodes recur over next few years and become immediately recognizable to the parents. In mild cases, carbohydrates and a few hours of sleep will be enough to end the symptoms. Thus said, the required amount of carbohydrate intake of a child, as well as for an adult is close to 0, because the liver can supply the required glucose quantity needed for the body through gluconeogenesis.
Precipitating factors, conditions that trigger an episode, may include extended fasting (e.g., missing supper the night before), a low carbohydrate intake the previous day (e.g., a hot dog without a bun), or stress such as a viral infection. Most children affected by ketotic hypoglycemia have a slender build, many with a weight percentile below height percentile, though without other evidence of malnutrition. Overweight children are rarely affected.
"Common symptoms of NDM includes:"
- Thirst and Frequent Urination
An excessive thirst (also known as polydipsia) and increased urination (also known as polyuria) are common signs of diabetes. An individual with diabetes, have accumulated blood glucose. Their kidneys are working overtime to filter and uptake excess sugar. However, their kidneys cannot keep up, excess sugar is excreted into their urine, and this drag along fluids from the diabetic's tissues. This may lead to more frequent urination and lead to dehydration. As a diabetic individual drinks more fluids to satisfy their thirst, he or she urinates even more.
- Dehydration
Effected areas of the body are the eyes, mouth, kidneys, heart, and pancreas. Other symptoms of dehydration includes headache, thirst and dry mouth, dizziness, tiredness, and dark colored urine. In severe cases of dehydration in diabetics, low blood pressure, sunken eyes, a weak pulse or rapid heart beat, feeling confused or fatigue. Dehydration and high blood glucose for extended period of time, the diabetic's kidney would try to filter the blood of access glucose and excrete this as urine. As the kidneys are filtering the blood, water is being removed from the blood and would need to be replaced. This leads to an increased thirst when the blood glucose is elevated in a diabetic individual. Water is needed to re-hydrate the body. Therefore, the body would take available from other parts of the body, such as saliva, tears, and from cells of the body. If access water is not available, the body would not be able to pass excess glucose out of the blood by urine and can lead to further dehydration.
"Severe symptoms of NDM (Deficiency of insulin):"
- Ketoacidosis
Is a diabetic complication that occurs when the body produces high levels of acid in the blood (ketones). This effects the pancreas, fat cells, and kidneys. This condition occurs when the body cannot produce enough insulin. In the absence or lack of insulin, the body of an diabetic individual will break down fat as fuel. This process produces a buildup of acids in the bloodstream known as ketones, in which leads to ketoacidosis if left untreated. The symptoms of ketoacidosis develop rapidly or within 24 hours. Symptoms of ketoacidosis are excessive thirst, frequent urination, nausea or vomiting, stomach pain, tiredness, shortness or fruity smell on breath and confusion.
- Intrauterine Growth Restriction
A condition in which the unborn baby is smaller than he or she should be, due to the fact he or she not growing at a normal rate in the womb. Delayed growth puts the baby at risk of certain problems during pregnancy, delivery, and after birth. The problems are as follows: baby's birth weight is 90% less than normal weight, difficulty handling vaginal delivery, decreased oxygen levels, hypoglycemia (low blood glucose), low resistance to infection, low Apgar scores (a test given after birth to test the baby's physical condition and evaluate if special medical care is needed), Meconium aspiration (inhaling of stools passed while in the uterus) which causes breathing issues, irregular body temperature and high red blood cell count.
- Hyperglycemia
A condition characterized as high blood glucose, which occurs when the body has too little insulin or when the body cannot use insulin properly. Hyperglycemia affects the pancreas, kidneys, and body's tissues. Characterization of hyperglycemia is high blood glucose, high levels of sugar in the urine, frequent urination and increase thirst.
- Hypoglycemia
A condition characterized an extremely low blood glucose, usually less than 70 mg/dL. Areas of the body that are affected, pancreas, kidneys, and mental state.
Impaired glucose tolerance (IGT) is a pre-diabetic state of hyperglycemia that is associated with insulin resistance and increased risk of cardiovascular pathology. IGT may precede type 2 diabetes mellitus by many years. IGT is also a risk factor for mortality.