Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
85–90% of IgA-deficient individuals are asymptomatic, although the reason for lack of symptoms is relatively unknown and continues to be a topic of interest and controversy. Some patients with IgA deficiency have a tendency to develop recurrent sinopulmonary infections, gastrointestinal infections and disorders, allergies, autoimmune conditions, and malignancies. These infections are generally mild and would not usually lead to an in-depth workup except when unusually frequent.
They may present with severe reactions including anaphylaxis to blood transfusions or intravenous immunoglobulin due to the presence of IgA in these blood products. Patients have an increased susceptibility to pneumonia and recurrent episodes of other respiratory infections and a higher risk of developing autoimmune diseases in middle age.
IgA deficiency and common variable immunodeficiency (CVID) feature similar B cell differentiation arrests, it does not present the same lymphocyte subpopulation abnormalities. IgA-deficient patients may progress to panhypogammaglobulinemia characteristic of CVID. Selective IgA and CVID are found in the same family.
Selective IgA deficiency is inherited and has been associated with differences in chromosomes 18, 14 and 6. Selective IgA deficiency is often inherited, but has been associated with some congenital intrauterine infections.
IgG deficiency (Selective deficiency of immunoglobulin G) is a form of dysgammaglobulinemia where the proportional levels of the IgG isotype are reduced relative to other immunoglobulin isotypes. IgG deficiency is often found in children as transient hypogammaglobulinemia of infancy (THI), which may occur with or without additional decreases in IgA or IgM.
IgG has four subclasses: IgG, IgG, IgG, and IgG. It is possible to have either a global IgG deficiency, or a deficiency of one or more specific subclasses of IgG. The main clinically relevant form of IgG deficiency is IgG. IgG deficiency is not usually encountered without other concomitant immunoglobulin deficiencies, and IgG deficiency is very common but usually asymptomatic.
IgG1 is present in the bloodstream at a percentage of about 60-70%, IgG2-20-30%, IgG3 about 5-8 %, and IgG4 1-3 %. IgG subclass deficiencies affect only IgG subclasses (usually IgG2 or IgG3), with normal total IgG and IgM immunoglobulins and other components of the immune system being at normal levels. These deficiencies can affect only one subclass or involve an association of two subclasses, such as IgG2 and IgG4. IgG deficiencies are usually not diagnosed until the age of 10. Some of the IgG levels in the blood are undetectable and have a low percentage such as IgG4, which makes it hard to dertermine if a deficiency is actually present. IgG subclass deficiencies are sometimes correlated with bad responses to pneumoccal polyscaccharides, especially IgG2 and or IgG4 deficiency. Some of these deficiencies are also involved with pancreatitis and have been linked to IgG4 levels.
The symptoms of CVID vary between people affected. Its main features are hypogammaglobulinemia and recurrent infections. Hypogammaglobulinemia manifests as a significant decrease in the levels of IgG antibodies, usually alongside IgA antibodies; IgM antibody levels are also decreased in about half of people. Infections are a direct result of the low antibody levels in the circulation, which do not adequately protect them against pathogens. The microorganisms that most frequently cause infections in CVID are bacteria Haemophilus influenzae, Streptococcus pneumoniae and Staphylococcus aureus. Pathogens less often isolated from people include Neisseria meningitidis, Pseudomonas aeruginosa and Giardia lamblia. Infections mostly affect the respiratory tract (nose, sinuses, bronchi, lungs) and the ears; they can also occur at other sites, such as the eyes, skin and gastrointestinal tract. These infections respond to antibiotics but can recur upon discontinuation of antibiotics. Bronchiectasis can develop when severe, recurrent pulmonary infections are left untreated.
In addition to infections, people with CVID can develop complications. These include:
- autoimmune manifestations, e.g. pernicious anemia, autoimmune haemolytic anemia (AHA), idiopathic thrombocytopenic purpura (ITP), psoriasis, vitiligo, rheumatoid arthritis, primary hypothyroidism, atrophic gastritis. Autoimmunity is the main type of complication in people with CVID, appearing in some form in up to 50% of individuals;
- malignancies, particularly Non-Hodgkin's lymphoma and gastric carcinoma;
- enteropathy, which manifests with a blunting of intestinal villi and inflammation, and is usually accompanied by symptoms such as abdominal cramps, diarrhea, constipation and, in some cases, malabsorption and weight loss. Symptoms of CVID enteropathy are similar to those of celiac disease, but don't respond to a gluten-free diet. Infectious causes must be excluded before a diagnosis of enteropathy can be made, as people with CVID are more susceptible to intestinal infections, e.g. by Giardia lamblia;
- lymphocytic infiltration of tissues, which can cause enlargement of lymph nodes (lymphadenopathy), of the spleen (splenomegaly) and of the liver (hepatomegaly), as well as the formation of granulomas. In the lung this is known as Granulomatous–lymphocytic interstitial lung disease.
Anxiety and depression can occur as a result of dealing with the other symptoms.
People generally complain of severe fatigue.
Among the presentation consistent with hyper IgM syndrome are the following:
- Infection/"Pneumocystis" pneumonia (PCP), which is common in infants with hyper IgM syndrome, is a serious illness. PCP is one of the most frequent and severe opportunistic infections in people with weakened immune systems. Many CD40 Ligand Deficiency are first diagnosed after having PCP in their first year of life. The fungus is common and is present in over 70% of healthy people’s lungs, however, Hyper IgM patients are not able to fight it off without the administration of Bactrim)
- Hepatitis (Hepatitis C)
- Chronic diarrhea
- Hypothyroidism
- Neutropenia
- Arthritis
- Encephalopathy (degenerative)
Isolated primary immunoglobulin M deficiency (or selective IgM immunodeficiency (SIgMD)) is a poorly defined dysgammaglobulinemia characterized by decreased levels of IgM while levels of other immunoglobulins are normal. The immunodeficiency has been associated with some clinical disorders including recurrent infections, atopy, Bloom's syndrome, celiac disease, systemic lupus erythematosus and malignancy, but, surprisingly, SIgMD seems to also occur in asymptomatic individuals. High incidences of recurrent upper respiratory tract infections (77%), asthma (47%) and allergic rhinitis (36%) have also been reported. SIgMD seems to be a particularly rare antibody deficiency with a reported prevalence between 0.03% (general population) and 0.1% (hospitalized patients).
The cause of selective IgM deficiency remains unclear, although various mechanisms have been proposed, such as an increase in regulatory T cell functions, defective T helper cell functions and impaired terminal differentiation of B lymphocytes into IgM-secreting cells among others. It is however puzzling that class switching seems to happen normally (serum levels of other antibodies are normal), while dysfunctioning of IgM synthesis is expected to occur together with abnormalities in other immunoglobulins. Notwithstanding a clear pathogenesis and commonly accepted definition, a cutoff for SIgMD could be the lower limit of the serum IgM reference range, such as 43 mg/dL in adults or even 20 mg/dL.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
The complement system is part of the innate as well as the adaptive immune system; it is a group of circulating proteins that can bind pathogens and form a membrane attack complex. Complement deficiencies are the result of a lack of any of these proteins. They may predispose to infections but also to autoimmune conditions.
1. C1q deficiency (lupus-like syndrome, rheumatoid disease, infections)
2. C1r deficiency (idem)
3. C1s deficiency
4. C4 deficiency (lupus-like syndrome)
5. C2 deficiency (lupus-like syndrome, vasculitis, polymyositis, pyogenic infections)
6. C3 deficiency (recurrent pyogenic infections)
7. C5 deficiency (Neisserial infections, SLE)
8. C6 deficiency (idem)
9. C7 deficiency (idem, vasculitis)
10. C8a deficiency
11. C8b deficiency
12. C9 deficiency (Neisserial infections)
13. C1-inhibitor deficiency (hereditary angioedema)
14. Factor I deficiency (pyogenic infections)
15. Factor H deficiency (haemolytic-uraemic syndrome, membranoproliferative glomerulonephritis)
16. Factor D deficiency (Neisserial infections)
17. Properdin deficiency (Neisserial infections)
18. MBP deficiency (pyogenic infections)
19. MASP2 deficiency
20. Complement receptor 3 (CR3) deficiency
21. Membrane cofactor protein (CD46) deficiency
22. Membrane attack complex inhibitor (CD59) deficiency
23. Paroxysmal nocturnal hemoglobinuria
24. Immunodeficiency associated with ficolin 3 deficiency
Hypergammaglobulinemia is a condition that is characterized by the increased levels of a certain immunoglobulin in the blood serum. The name of the disorder refers to an excess of proteins after serum protein electrophoresis (found in the gammaglobulin region).
Most hypergammaglobulinemias are caused by an excess of immunoglobulin M (IgM), because this is the default immunoglobulin type prior to class switching. Some types of hypergammaglobulinemia are actually caused by a deficiency in the other major types of immunoglobulins, which are IgA, IgE and IgG.
There are 5 types of hypergammaglobulinemias associated with hyper IgM.
MeSH considers hyper IgM syndrome to be a form of dysgammaglobulinemia, not a form of hypergammaglobulinemia .
Hypergammaglobulinemia is a medical condition with elevated levels of gamma globulin.
It is a type of immunoproliferative disorder.
Affects males 50% of the time if mother is a carrier for the gene. Children are fine until 6–9 months of age. Present with recurrent infections with Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, hepatitis virus, and enterovirus CNS infections. Examination shows lymphoid hypoplasia (tonsils and adenoids, no splenomegaly or lymphadenopathy). There is significant decrease in all immunoglobulins.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
According to a European registry study, the mean age at onset of symptoms was 26.3 years old. As per the criteria laid out by ESID (European Society for Immunodeficiencies) and PAGID (Pan-American Group for Immunodeficiency), CVID is diagnosed if:
- the person presents with a marked decrease of serum IgG levels (<4.5 g/L) and a marked decrease below the lower limit of normal for age in at least one of the isotypes IgM or IgA;
- the person is four years of age or older;
- the person lacks antibody immune response to protein antigens or immunization.
Diagnosis is chiefly by exclusion, i.e. alternative causes of hypogammaglobulinemia, such as X-linked agammaglobulinemia, must be excluded before a diagnosis of CVID can be made.
Diagnosis is difficult because of the diversity of phenotypes seen in people with CVID. For example, serum immunoglobulin levels in people with CVID vary greatly. Generally, people can be grouped as follows: no immunoglobulin production, immunoglobulin (Ig) M production only, or both normal IgM and IgG production. Additionally, B cell numbers are also highly variable. 12% of people have no detectable B cells, 12% have reduced B cells, and 54% are within the normal range. In general, people with CVID display higher frequencies of naive B cells and lower frequencies of class-switched memory B cells. Frequencies of other B cell populations, such as IgD memory B cells, transitional B cells, and CD21 B cells, are also affected, and are associated with specific disease features. Although CVID is often thought of as a serum immunoglobulin and B cell-mediated disease, T cells can display abnormal behavior. Affected individuals typically present with low frequencies of CD4, a T-cell marker, and decreased circulation of regulatory T cells and iNKT cell. Notably, approximately 10% of people display CD4 T cell counts lower than 200 cells/mm; this particular phenotype of CVID has been named LOCID (Late Onset Combined Immunodeficiency), and has a poorer prognosis than classical CVID.
LRBA deficiency presents as a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. Predominant clinical problems include idiopathic thrombocytopenic purpura (ITP), autoimmune hemolytic anemia (AIHA), and an autoimmune enteropathy. Before the discovery of these gene mutations, patients were diagnosed with common variable immune deficiency (CVID), which is characterized by low antibody levels and recurrent infections. Infections mostly affect the respiratory tract, as many patients suffer from chronic lung disease, pneumonias, and bronchiectasis. Lymphocytic interstitial lung disease (ILD) is also observed, which complicates breathing and leads to impairment of lung function and mortality. Infections can also occur at other sites, such as the eyes, skin and gastrointestinal tract. Many patients suffer from chronic diarrhea and inflammatory bowel disease. Other clinical features can include hepatosplenomegaly, reoccurring warts, growth retardation, allergic dermatitis, and arthritis. Notably, LRBA deficiency has also been associated with type 1 diabetes mellitus. There is significant clinical phenotypic overlap with disease caused by CTLA4 haploinsufficiency. Since LRBA loss results in a loss of CTLA4 protein, the immune dysregulation syndrome of LRBA deficient patients can be attributed to the secondary loss of CTLA4. Because the predominant features of the disease include autoantibody-mediated disease (AIHA, ITP), Treg defects (resembling those found in CTLA4 haploinsufficient patients), autoimmune infiltration (of non-lymphoid organs, also resembling that found in CTLA4 haploinsufficient patients), and enteropathy, the disease has been termed LATAIE for LRBA deficiency with autoantibodies, Treg defects, autoimmune infiltration, and enteropathy.
Complete or partial deficiency
- "Complete insufficiency" of T cell function can result from hereditary conditions (also called primary conditions) such as severe combined immunodeficiency (SCID), Omenn syndrome, and cartilage–hair hypoplasia.
- "Partial insufficiencies" of T cell function include acquired immune deficiency syndrome (AIDS), and hereditary conditions such as DiGeorge syndrome (DGS), chromosomal breakage syndromes (CBSs), and B-cell and T-cell combined disorders such as ataxia-telangiectasia (AT) and Wiskott–Aldrich syndrome (WAS).
- "Primary (or hereditary) immunodeficiencies" of T cells include some that cause complete insufficiency of T cells, such as severe combined immunodeficiency (SCID), Omenn syndrome, and Cartilage–hair hypoplasia.
- "Secondary causes" are more common than primary ones. Secondary (or acquired) causes are mainly:
The signs and symptoms of DOCK8 deficiency are similar to the autosomal dominant form, STAT3 deficiency. However, in DOCK8 deficiency, there is no skeletal or connective tissue involvement, and affected individuals do not have the characteristic facial features of those with autosomal dominant hyper-IgE syndrome. DOCK8 deficient children often have eczema, respiratory and skin staphylococcus infections.
Beyond these, many other recurrent infections have been observed, including recurrent fungal infections and recurrent viral infections (including molluscum contagiosum, herpes simplex, and herpes zoster), recurrent upper respiratory infection (including "Streptococcus pneumoniae", "Haemophilus influenzae", respiratory syncytial virus, and adenovirus), recurrent sinusitis, recurrent otitis media, mastoiditis, pneumonia, bronchitis with bronchiectasis, osteomyelitis, candidiasis, meningitis (caused by cryptococcus or H. influenzae), pericarditis, salmonella enteritis, and giardiasis. Other dermatologic problems include squamous-cell carcinoma/dysplasia (vulvar, anal, and facial). Immune problems are also common, including autoimmune hemolytic anemia, severe allergies (both food and environmental), asthma, and reactive airway disease. The nervous system may also be affected; observed conditions in DOCK8 deficient people include hemiplegia, ischemic stroke, subarachnoid hemorrhage, and facial paralysis. Vascular complications are common, including aortic aneurysm, cerebral aneurysm, vessel occlusion and underperfusion, and leukocytoclastic vasculitis.
A minority of patients are diagnosed with thymoma prior to manifestation of the immunodeficient state. Spindle-cell histology is present in most cases.
Because patients with GS have deficient humoral and cellular immunity, they are susceptible to a wide range of infections. Most commonly these patients suffer from respiratory tract infections. Chronic diarrhea is often related to villous atrophy rather than infection (Kelesidis, 2010).
Often autoimmune disease is associated with GS - most commonly pure red cell aplasia and myasthenia gravis. While the patients may experience hypogammaglobulinemia, a large percentage will have autoantibodies present in their serum (Kelesidis, 2010). It is theorized that the presence of thymoma may inhibit the thymus’s normal role in production of self-tolerant T lymphocytes. These T-lymphocytes may then attack the B cell precursors in the marrow, preventing maturation and ultimately resulting in hypogammaglobulinemia (Arnold, 2015).
X-linked agammaglobulinemia (XLA) is a rare genetic disorder discovered in 1952 that affects the body's ability to fight infection. As the form of agammaglobulinemia that is X-linked, it is much more common in males. In people with XLA, the white blood cell formation process does not generate mature B cells, which manifests as a complete or near-complete lack of proteins called gamma globulins, including antibodies, in their bloodstream. B cells are part of the immune system and normally manufacture antibodies (also called immunoglobulins), which defend the body from infections by sustaining a humoral immunity response. Patients with untreated XLA are prone to develop serious and even fatal infections. A mutation occurs at the Bruton's tyrosine kinase (Btk) gene that leads to a severe block in B cell development (at the pre-B cell to immature B cell stage) and a reduced immunoglobulin production in the serum. Btk is particularly responsible for mediating B cell development and maturation through a signaling effect on the B cell receptor BCR. Patients typically present in early childhood with recurrent infections, in particular with extracellular, encapsulated bacteria. XLA is deemed to have a relatively low incidence of disease, with an occurrence rate of approximately 1 in 200,000 live births and a frequency of about 1 in 100,000 male newborns. It has no ethnic predisposition. XLA is treated by infusion of human antibody. Treatment with pooled gamma globulin cannot restore a functional population of B cells, but it is sufficient to reduce the severity and number of infections due to the passive immunity granted by the exogenous antibodies.
XLA is caused by a mutation on the X chromosome of a single gene identified in 1993 which produces an enzyme known as Bruton's tyrosine kinase, or Btk. XLA was first characterized by Dr. Ogden Bruton in a ground-breaking research paper published in 1952 describing a boy unable to develop immunities to common childhood diseases and infections. It is the first known immune deficiency, and is classified with other inherited (genetic) defects of the immune system, known as primary immunodeficiency disorders.
LRBA deficiency is a rare genetic disorder of the immune system. This disorder is caused by a mutation in the gene "LRBA". LRBA stands for “Lipopolysaccharide (LPS)-responsive vesicle trafficking, beach- and anchor-containing” gene. This condition is characterized by autoimmunity, lymphoproliferation, and immune deficiency. It was first described by Gabriela Lopez-Herrera from University College London in 2012. Investigators in the laboratory of Dr. Michael Lenardo at National Institute of Allergy and Infectious Diseases, the National Institutes of Health and Dr. Michael Jordan at Cincinnati Children’s Hospital Medical Center later described this condition and therapy in 2015.
There are no formal diagnostic criteria (Kelleher, 2003) and many informal definitions exist. Most commonly thymoma is present with mixed humoral and cellular immune deficiency. T and B cells are both depleted so patients suffer from both encapsulated organisms as well as opportunistic infections (Miyakis, 2005). Some have defined GS as a subset of common variable immunodeficiency (CVID). Unlike CVID, there are reduced B cells in the periphery in GS (Kelesidis, 2010).
More generally it can be defined as an adult-onset primary immunodeficiency associated with thymoma, hypogammaglobulinemia, diminished B and T cells, and inverted CD4/CD8+ ratio(Kelesidis, 2010).
Signs/symptoms of humoral immune deficiency depend on the cause, but generally include signs of infection such as:
- Sinusitis
- Sepsis
- Skin infection
- Pneumonia
Cause of this deficiency is divided into "primary" and "secondary":
- Primary the International Union of Immunological Societies classifies primary immune deficiencies of the humoral system as follows:
- Secondary secondary (or acquired) forms of humoral immune deficiency are mainly due to hematopoietic malignancies and infections that disrupt the immune system:
This condition causes severe infections. it is characterized by elevated immunoglobulins that function poorly.
Other symptoms are:
- Bronchiectasis
- Hepatosplenomegaly
- Pyoderma
- Emphysema
- Diarrhea
Presentations differ among causes, but T cell insufficiency generally manifests as unusually severe common viral infections (respiratory syncytial virus, rotavirus), diarrhea, and eczematous or erythrodermatous rashes. Failure to thrive and cachexia are later signs of a T-cell deficiency.
Individuals with BENTA disease have polyclonal B cell lymphocytosis (i.e. excess B cells) developing in infancy, in addition to splenomegaly and lymphadenopathy. Patients may have low serum IgM and mildly anergic T cells. These features likely contribute to the mild immunodeficiency seen with BENTA disease. Patients are generally susceptible to recurrent sinopulmonary and ear infections in childhood, and may be more susceptible to certain viruses including Epstein-Barr virus, BK virus, and molluscum contagiosum.