Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A T cell, or T lymphocyte, is a type of lymphocyte (a subtype of white blood cell) that plays a central role in cell-mediated immunity. T cells can be distinguished from other lymphocytes, such as B cells and natural killer cells, by the presence of a T-cell receptor on the cell surface. They are called "T cells" because they mature in the thymus from thymocytes (although some also mature in the tonsils). The several subsets of T cells each have a distinct function. The majority of human T cells rearrange their alpha and beta chains on the cell receptor and are termed alpha beta T cells (αβ T cells) and are part of the adaptive immune system. Specialized gamma delta T cells, (a small minority of T cells in the human body, more frequent in ruminants), have invariant T-cell receptors with limited diversity, that can effectively present antigens to other T cells and are considered to be part of the innate immune system.
A lymphocyte is one of the subtypes of white blood cell in a vertebrate's immune system. Lymphocytes include natural killer cells (Phagocytes) (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic adaptive immunity), and B cells (for humoral, antibody-driven adaptive immunity). They are the main type of cell found in lymph, which prompted the name "lymphocyte".
Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Plasma cells originate in the bone marrow; B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell. Once released into the blood and lymph, these antibody molecules bind to the target antigen (foreign substance) and initiate its neutralization or destruction.
The three major types of lymphocyte are T cells, B cells and natural killer (NK) cells. Lymphocytes can be identified by their large nucleus.
The category of effector T cell is a broad one that includes various T cell types that actively respond to a stimulus, such as co-stimulation. This includes helper, killer, regulatory, and potentially other T cell types.
Eosinophils compose about 2-4% of the WBC total. This count fluctuates throughout the day, seasonally, and during menstruation. It rises in response to allergies, parasitic infections, collagen diseases, and disease of the spleen and central nervous system. They are rare in the blood, but numerous in the mucous membranes of the respiratory, digestive, and lower urinary tracts.
They primarily deal with parasitic infections. Eosinophils are also the predominant inflammatory cells in allergic reactions. The most important causes of eosinophilia include allergies such as asthma, hay fever, and hives; and also parasitic infections. They secrete chemicals that destroy these large parasites, such as hook worms and tapeworms, that are too big for any one WBC to phagocytize. In general, their nucleus is bi-lobed. The lobes are connected by a thin strand. The cytoplasm is full of granules that assume a characteristic pink-orange color with eosin staining.
Neutrophils are the most abundant white blood cell, constituting 60-70% of the circulating leukocytes. They defend against bacterial or fungal infection. They are usually first responders to microbial infection; their activity and death in large numbers form pus. They are commonly referred to as polymorphonuclear (PMN) leukocytes, although, in the technical sense, PMN refers to all granulocytes. They have a multi-lobed nucleus, which consists of three to five lobes connected by slender strands. This gives the neutrophils the appearance of having multiple nuclei, hence the name polymorphonuclear leukocyte. The cytoplasm may look transparent because of fine granules that are pale lilac when stained. Neutrophils are active in phagocytosing bacteria and are present in large amount in the pus of wounds. These cells are not able to renew their lysosomes (used in digesting microbes) and die after having phagocytosed a few pathogens. Neutrophils are the most common cell type seen in the early stages of acute inflammation. The life span of a circulating human neutrophil is about 5.4 days.
Persons afflicted with X-SCID often have infections very early in life, before three months of age. This occurs due to the decreased amount of immunoglobulin G (IgG) levels in the infant during the three-month stage. This is followed by viral infections such as pneumonitis, an inflammation of the lung which produces common symptoms such as cough, fever, chills, and shortness of breath. A telltale sign of X-SCID is candidiasis, a type of fungal infection caused by "Candida albicans". Candidiasis involves moist areas of the body such as skin, the mouth, respiratory tract, and vagina; symptoms of oral candidiasis include difficulty in swallowing, pain on swallowing and oral lesions. Recurrent eczema-like rashes are also a common symptom. Other common infections experienced by individuals with X-SCID include diarrhea, sepsis, and otitis media. Some other common symptoms that are experienced by X-SCID patients include failure to thrive, gut problems, skin problems, and muscle hypotonia.
In some patients symptoms may not appear for the first six months after birth. This is likely due to passive immunity received from the mother in order to protect the baby from infections until the newborn is able to make its own antibodies. As a result, there can be a silent period where the baby displays no symptoms of X-SCID followed by the development of frequent infections.
Complete or partial deficiency
- "Complete insufficiency" of T cell function can result from hereditary conditions (also called primary conditions) such as severe combined immunodeficiency (SCID), Omenn syndrome, and cartilage–hair hypoplasia.
- "Partial insufficiencies" of T cell function include acquired immune deficiency syndrome (AIDS), and hereditary conditions such as DiGeorge syndrome (DGS), chromosomal breakage syndromes (CBSs), and B-cell and T-cell combined disorders such as ataxia-telangiectasia (AT) and Wiskott–Aldrich syndrome (WAS).
- "Primary (or hereditary) immunodeficiencies" of T cells include some that cause complete insufficiency of T cells, such as severe combined immunodeficiency (SCID), Omenn syndrome, and Cartilage–hair hypoplasia.
- "Secondary causes" are more common than primary ones. Secondary (or acquired) causes are mainly:
Presentations differ among causes, but T cell insufficiency generally manifests as unusually severe common viral infections (respiratory syncytial virus, rotavirus), diarrhea, and eczematous or erythrodermatous rashes. Failure to thrive and cachexia are later signs of a T-cell deficiency.
In some cases, lymphocytopenia can be further classified according to which kind of lymphocytes are reduced. If all three kinds of lymphocytes are suppressed, then the term is used without further qualification.
- In T lymphocytopenia, there are too few T lymphocytes, but normal numbers of other lymphocytes. It causes, and manifests as, a T cell deficiency. This is usually caused by HIV infection (resulting in AIDS), but may be Idiopathic CD4+ lymphocytopenia (ICL), which is a very rare heterogeneous disorder defined by CD4+ T-cell counts below 300 cells/μL in the absence of any known immune deficiency condition, such as human immunodeficiency virus (HIV) infection or chemotherapy.
- In B lymphocytopenia, there are too few B lymphocytes, but possibly normal numbers of other lymphocytes. It causes, and manifests as, a humoral immune deficiency. This is usually caused by medications that suppress the immune system.
- In NK lymphocytopenia, there are too few natural killer cells, but normal numbers of other lymphocytes. This is very rare.
X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells. In the absence of T cell help, B cells become defective. It is an x-linked recessive trait, stemming from a mutated (abnormal) version of the IL2-RG gene located at xq13.1 on the X-chromosome, which is shared between receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.
Lymphocytopenia, or lymphopenia, is the condition of having an abnormally low level of lymphocytes in the blood. Lymphocytes are a white blood cell with important functions in the immune system. The opposite is lymphocytosis, which refers to an excessive level of lymphocytes.
Lymphocytopenia may be present as part of a pancytopenia, when the total numbers of all types of blood cells are reduced.
Among the presentation consistent with hyper IgM syndrome are the following:
- Infection/"Pneumocystis" pneumonia (PCP), which is common in infants with hyper IgM syndrome, is a serious illness. PCP is one of the most frequent and severe opportunistic infections in people with weakened immune systems. Many CD40 Ligand Deficiency are first diagnosed after having PCP in their first year of life. The fungus is common and is present in over 70% of healthy people’s lungs, however, Hyper IgM patients are not able to fight it off without the administration of Bactrim)
- Hepatitis (Hepatitis C)
- Chronic diarrhea
- Hypothyroidism
- Neutropenia
- Arthritis
- Encephalopathy (degenerative)
Gene expression profiling has revealed that diffuse large B-cell lymphoma (DLBCL) is composed of at least 3 different sub-groups, each having distinct oncogenic mechanisms that respond to therapies in different ways. Germinal Center B-Cell like (GCB) DLBCLs appear to arise from normal germinal center B cells, while Activated B-cell like (ABC) DLBCLs are thought to arise from postgerminal center B cells that are arrested during plasmacytic differentiation. The differences in gene expression between GCB DLBCL and ABC DLBCL are as vast as the differences between distinct types of leukemia, but these conditions have historically been grouped together and treated as the same disease.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
Hypergammaglobulinemia is a condition that is characterized by the increased levels of a certain immunoglobulin in the blood serum. The name of the disorder refers to an excess of proteins after serum protein electrophoresis (found in the gammaglobulin region).
Most hypergammaglobulinemias are caused by an excess of immunoglobulin M (IgM), because this is the default immunoglobulin type prior to class switching. Some types of hypergammaglobulinemia are actually caused by a deficiency in the other major types of immunoglobulins, which are IgA, IgE and IgG.
There are 5 types of hypergammaglobulinemias associated with hyper IgM.
MeSH considers hyper IgM syndrome to be a form of dysgammaglobulinemia, not a form of hypergammaglobulinemia .
Individuals with BENTA disease have polyclonal B cell lymphocytosis (i.e. excess B cells) developing in infancy, in addition to splenomegaly and lymphadenopathy. Patients may have low serum IgM and mildly anergic T cells. These features likely contribute to the mild immunodeficiency seen with BENTA disease. Patients are generally susceptible to recurrent sinopulmonary and ear infections in childhood, and may be more susceptible to certain viruses including Epstein-Barr virus, BK virus, and molluscum contagiosum.
The symptoms of CVID vary between people affected. Its main features are hypogammaglobulinemia and recurrent infections. Hypogammaglobulinemia manifests as a significant decrease in the levels of IgG antibodies, usually alongside IgA antibodies; IgM antibody levels are also decreased in about half of people. Infections are a direct result of the low antibody levels in the circulation, which do not adequately protect them against pathogens. The microorganisms that most frequently cause infections in CVID are bacteria Haemophilus influenzae, Streptococcus pneumoniae and Staphylococcus aureus. Pathogens less often isolated from people include Neisseria meningitidis, Pseudomonas aeruginosa and Giardia lamblia. Infections mostly affect the respiratory tract (nose, sinuses, bronchi, lungs) and the ears; they can also occur at other sites, such as the eyes, skin and gastrointestinal tract. These infections respond to antibiotics but can recur upon discontinuation of antibiotics. Bronchiectasis can develop when severe, recurrent pulmonary infections are left untreated.
In addition to infections, people with CVID can develop complications. These include:
- autoimmune manifestations, e.g. pernicious anemia, autoimmune haemolytic anemia (AHA), idiopathic thrombocytopenic purpura (ITP), psoriasis, vitiligo, rheumatoid arthritis, primary hypothyroidism, atrophic gastritis. Autoimmunity is the main type of complication in people with CVID, appearing in some form in up to 50% of individuals;
- malignancies, particularly Non-Hodgkin's lymphoma and gastric carcinoma;
- enteropathy, which manifests with a blunting of intestinal villi and inflammation, and is usually accompanied by symptoms such as abdominal cramps, diarrhea, constipation and, in some cases, malabsorption and weight loss. Symptoms of CVID enteropathy are similar to those of celiac disease, but don't respond to a gluten-free diet. Infectious causes must be excluded before a diagnosis of enteropathy can be made, as people with CVID are more susceptible to intestinal infections, e.g. by Giardia lamblia;
- lymphocytic infiltration of tissues, which can cause enlargement of lymph nodes (lymphadenopathy), of the spleen (splenomegaly) and of the liver (hepatomegaly), as well as the formation of granulomas. In the lung this is known as Granulomatous–lymphocytic interstitial lung disease.
Anxiety and depression can occur as a result of dealing with the other symptoms.
People generally complain of severe fatigue.
IgG deficiency (Selective deficiency of immunoglobulin G) is a form of dysgammaglobulinemia where the proportional levels of the IgG isotype are reduced relative to other immunoglobulin isotypes. IgG deficiency is often found in children as transient hypogammaglobulinemia of infancy (THI), which may occur with or without additional decreases in IgA or IgM.
IgG has four subclasses: IgG, IgG, IgG, and IgG. It is possible to have either a global IgG deficiency, or a deficiency of one or more specific subclasses of IgG. The main clinically relevant form of IgG deficiency is IgG. IgG deficiency is not usually encountered without other concomitant immunoglobulin deficiencies, and IgG deficiency is very common but usually asymptomatic.
IgG1 is present in the bloodstream at a percentage of about 60-70%, IgG2-20-30%, IgG3 about 5-8 %, and IgG4 1-3 %. IgG subclass deficiencies affect only IgG subclasses (usually IgG2 or IgG3), with normal total IgG and IgM immunoglobulins and other components of the immune system being at normal levels. These deficiencies can affect only one subclass or involve an association of two subclasses, such as IgG2 and IgG4. IgG deficiencies are usually not diagnosed until the age of 10. Some of the IgG levels in the blood are undetectable and have a low percentage such as IgG4, which makes it hard to dertermine if a deficiency is actually present. IgG subclass deficiencies are sometimes correlated with bad responses to pneumoccal polyscaccharides, especially IgG2 and or IgG4 deficiency. Some of these deficiencies are also involved with pancreatitis and have been linked to IgG4 levels.
Isolated primary immunoglobulin M deficiency (or selective IgM immunodeficiency (SIgMD)) is a poorly defined dysgammaglobulinemia characterized by decreased levels of IgM while levels of other immunoglobulins are normal. The immunodeficiency has been associated with some clinical disorders including recurrent infections, atopy, Bloom's syndrome, celiac disease, systemic lupus erythematosus and malignancy, but, surprisingly, SIgMD seems to also occur in asymptomatic individuals. High incidences of recurrent upper respiratory tract infections (77%), asthma (47%) and allergic rhinitis (36%) have also been reported. SIgMD seems to be a particularly rare antibody deficiency with a reported prevalence between 0.03% (general population) and 0.1% (hospitalized patients).
The cause of selective IgM deficiency remains unclear, although various mechanisms have been proposed, such as an increase in regulatory T cell functions, defective T helper cell functions and impaired terminal differentiation of B lymphocytes into IgM-secreting cells among others. It is however puzzling that class switching seems to happen normally (serum levels of other antibodies are normal), while dysfunctioning of IgM synthesis is expected to occur together with abnormalities in other immunoglobulins. Notwithstanding a clear pathogenesis and commonly accepted definition, a cutoff for SIgMD could be the lower limit of the serum IgM reference range, such as 43 mg/dL in adults or even 20 mg/dL.
Hypergammaglobulinemia is a medical condition with elevated levels of gamma globulin.
It is a type of immunoproliferative disorder.
Common variable immunodeficiency (CVID) is an immune disorder characterized by recurrent infections and low antibody levels, specifically in immunoglobulin (Ig) types IgG, IgM and IgA. Generally symptoms include high susceptibility to foreign invaders, chronic lung disease, and inflammation and infection of the gastrointestinal tract. However, symptoms vary greatly between people. CVID is a lifelong disease.
The cause of CVID is poorly understood. Deletions in genes that encode cell surface proteins and cytokine receptors, such as CD19, CD20, CD21, and CD80, is a likely cause. A deletion is a mutation in which part of the chromosome is lost during DNA replication which may include several genes, or as few as a single base pair. Additionally, the disease is defined by T cell defects, namely reduced proliferative capacity. The disease is hard to diagnose, taking on average 6–7 years after onset.
Treatment options are limited, and usually include lifelong immunoglobulin replacement therapy. This therapy is thought to help reduce bacterial infections. This treatment alone is not wholly effective, and many people still experience other symptoms like lung disease and noninfectious inflammatory symptoms.
CVID was first diagnosed over 60 years ago, and since has emerged as the predominant class of primary antibody deficiencies. CVID is formally diagnosed by levels of IgG and IgA more than two standard deviations from the norm, and no other cause for hypogammaglobulinemia, an abnormally low level of immunoglobulins in the blood. It is thought to affect between 1 in 25,000 to 1 in 50,000 people worldwide.
After leaving the bone marrow, the B cell acts as an antigen presenting cell (APC) and internalizes offending antigens, which are taken up by the B cell through receptor-mediated endocytosis and processed. Pieces of the antigen (which are now known as "antigenic peptides") are loaded onto MHC II molecules, and presented on its extracellular surface to CD4+ T cells (sometimes called "T helper cells"). These T cells bind to the MHC II-antigen molecule and cause activation of the B cell. This is a type of safeguard to the system, almost like a two-factor authentication method. First, the B cells have to encounter a foreign antigen, and are then required to be activated by T helper cells before they differentiate to specific cells.
Upon stimulation by a T cell, which usually occurs in germinal centers of secondary lymphoid organs like the spleen and lymph nodes, the activated B cell begins to differentiate into more specialized cells. Germinal center B cells may differentiate into memory B cells or plasma cells. Most of these B cells will become plasmablasts (or "immature plasma cells"), and eventually plasma cells, and begin producing large volumes of antibodies. Some B cells will undergo a process known as affinity maturation. This process favors, by selection for the ability to bind antigen with higher affinity, the activation and growth of B cell clones able to secrete antibodies of higher affinity for the antigen.
BENTA disease is a rare genetic disorder of the immune system. BENTA stands for "B cell expansion with NF-κB and T cell anergy" and is caused by germline heterozygous gain-of-function mutations in the gene CARD11 (see OMIM entry #607210). This disorder is characterized by polyclonal B cell lymphocytosis with onset in infancy, splenomegaly, lymphadenopathy, mild immunodeficiency, and increased risk of lymphoma. Investigators Andrew L. Snow and Michael J. Lenardo at the National Institute of Allergy and Infectious Disease at the U.S. National Institutes of Health first characterized BENTA disease in 2012. Dr. Snow's current laboratory at the Uniformed Services University of the Health Sciences is now actively studying this disorder.