Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Transient tachypnea of the newborn (TTN, TTNB, or "transitory tachypnea of newborn") is a respiratory problem that can be seen in the newborn shortly after delivery. Amongst causes of respiratory distress in term neonates, it is the most common. It consists of a period of rapid breathing (higher than the normal range of 30-60 times per minute). It is likely due to amniotic fluid remaining in the lungs after birth. Usually, this condition resolves over 24–48 hours. Treatment is supportive and may include supplemental oxygen and antibiotics. The chest x-ray shows hyperinflation of the lungs including prominent pulmonary vascular markings, flattening of the diaphragm, and fluid in the horizontal fissure of the right lung.
IRDS begins shortly after birth and is manifest by fast breathing, more than 60 per minute, a fast heart rate, chest wall retractions (recession), expiratory grunting, nasal flaring and blue discoloration of the skin during breathing efforts.
As the disease progresses, the baby may develop ventilatory failure (rising carbon dioxide concentrations in the blood), and prolonged cessations of breathing ("apnea"). Whether treated or not, the clinical course for the acute disease lasts about 2 to 3 days. During the first day the patient worsens and requires more support. During the second day the baby may be remarkably stable on adequate support and resolution is noted during the third day, heralded by a prompt diuresis. Despite huge advances in care, IRDS remains the most common single cause of death in the first month of life in the developed world. Complications include metabolic disorders (acidosis, low blood sugar), patent ductus arteriosus, low blood pressure, chronic lung changes, and bleeding in the brain. The disease is frequently complicated by prematurity and its additional defects in other organ function.
TTN is a diagnosis of exclusion as it is a benign condition that can have symptoms and signs similar to more serious conditions, such as respiratory distress syndrome. A chest X-ray may show a radiopaque line - fluid - in the horizontal fissure of the right lung, fluid infiltrate throughout alveoli or fluid in individual lung lobes. The lungs may also appear hyperinflated.
Infant respiratory distress syndrome (IRDS), also called neonatal respiratory distress syndrome (NRDS), respiratory distress syndrome of newborn, or increasingly surfactant deficiency disorder (SDD), and previously called hyaline membrane disease (HMD), is a syndrome in premature infants caused by developmental insufficiency of pulmonary surfactant production and structural immaturity in the lungs. It can also be a consequence of neonatal infection. It can also result from a genetic problem with the production of surfactant associated proteins. IRDS affects about 1% of newborn infants and is the leading cause of death in preterm infants. The incidence decreases with advancing gestational age, from about 50% in babies born at 26–28 weeks, to about 25% at 30–31 weeks. The syndrome is more frequent in infants of diabetic mothers and in the second born of premature twins.
IRDS is distinct from pulmonary hypoplasia, another leading cause of neonatal death that involves respiratory distress.
Physiological and symptomatic changes often vary according to the altitude involved.
The Lake Louise Consensus Definition for High-Altitude Pulmonary Edema has set widely used criteria for defining HAPE symptoms:
Symptoms: at least two of:
- Difficulty in breathing (dyspnea) at rest
- Cough
- Weakness or decreased exercise performance
- Chest tightness or congestion
Signs: at least two of:
- Crackles or wheezing (while breathing) in at least one lung field
- Central cyanosis (blue skin color)
- Tachypnea (rapid shallow breathing)
- Tachycardia (rapid heart rate)
The initial cause of HAPE is a shortage of oxygen caused by the lower air pressure at high altitudes.
The mechanisms by which this oxygen shortage causes HAPE are poorly understood, but two processes are believed to be important:
1. Increased pulmonary arterial and capillary pressures (pulmonary hypertension) secondary to hypoxic pulmonary vasoconstriction.
2. An idiopathic non-inflammatory increase in the permeability of the vascular endothelium.
Although higher pulmonary arterial pressures are associated with the development of HAPE, the presence of pulmonary hypertension may not in itself be sufficient to explain the development of edema: severe pulmonary hypertension can exist in the absence of clinical HAPE in subjects at high altitude.
Oral ingestion of hydrocarbons often is associated with symptoms of mucous membrane irritation, vomiting, and central nervous system depression. Cyanosis, tachycardia, and tachypnea may appear as a result of aspiration, with subsequent development of chemical pneumonitis. Other clinical findings include albuminuria, hematuria, hepatic enzyme derangement, and cardiac arrhythmias. Doses as low as 10 ml orally have been reported to be potentially fatal, whereas some patients have survived the ingestion of 60 ml of petroleum distillates. A history of coughing or choking in association with vomiting strongly suggests aspiration and hydrocarbon pneumonia. Hydrocarbon pneumonia is an acute hemorrhagic necrotizing disease that can develop within 24 h after the ingestion. Pneumonia may require several weeks for complete resolution.
Symptoms of chemical (hydrocarbon) pneumonia may include:
- burning of the nose, eyes, lips, mouth, and throat
- dry cough
- wet cough producing clear, yellow, or green mucus
- cough producing blood or frothy pink matter
- nausea or abdominal pain
- chest pain
- shortness of breath
- painful breathing or pleuritis (an inflammation of the outside covering of the lungs)
- headache
- flu symptoms
High-altitude pulmonary edema (HAPE) ("HAPO" spelled oedema in British English) is a life-threatening form of non-cardiogenic pulmonary edema (fluid accumulation in the lungs) that occurs in otherwise healthy mountaineers at altitudes typically above . However, cases have also been reported at lower altitudes (between in highly vulnerable subjects), though what makes some people susceptible to HAPE is currently unknown. HAPE remains the major cause of death related to high-altitude exposure, with a high mortality rate in the absence of adequate emergency treatment.
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
Classification can be complex, and the combined efforts of clinicians, radiologists, and pathologists can help in the generation of a more specific diagnosis.
Idiopathic interstitial pneumonia can be subclassified based on histologic appearance into the following patterns:
Usual interstitial pneumonia is the most common type.
Idiopathic pneumonia syndrome is a set of pneumonia-like symptoms (such as fever, chills, coughing, and breathing problems) that occur with no sign of infection in the lung. Idiopathic pneumonia syndrome is a serious condition that can occur after a stem cell transplant.
Pulmonary edema, connective tissue diseases, asbestosis, lymphangitic carcinomatosis, lymphoma, lymphangioleiomyomatosis, drug-induced lung diseases
- Lymphadenopathy
Sarcoidosis, silicosis, berylliosis, lymphangitic carcinomatosis, lymphoma, lymphocytic interstitial pneumonia
"Fire-eater's lung" is an important variant of hydrocarbon pneumonitis, which typically involves adolescents or young adults who are exposed through mishap during flame-blowing performances using a variety of different flammable materials. The substances used overlap with some of the pediatric exposures (kerosene, gasoline) but can also include other hydrocarbons such as jet fuel and, in France, an aromatic hydrocarbon enriched petroleum-distillate called "kerdan". There has also been a case of citronella oil aspiration in a fire-eater. As with hydrocarbon pneumonitis in children, fire-eater's lung can also be complicated by pneumatocele. Although the term "acute lipoid pneumonia" has been used to refer to the "fire-eater's lung" syndrome, this is a misnomer.
Hemothorax tends to occur following blunt or penetrating trauma to the thorax or thoracoabdominal area. It may also follow thoracic surgery, or may be spontaneous. Chest pain, dyspnea, and tachypnea are common presenting features. Other symptoms of hemothorax are dependent on the mechanism of injury, but may include:
- Cyanosis
- Decreased or absent breath sounds on affected side
- Tracheal deviation to unaffected side
- Dull resonance on percussion
- Unequal chest rise
- Tachycardia
- Hypotension
- Pale, cool, clammy skin
- Possible subcutaneous emphysema
- Narrowing pulse pressure
Idiopathic interstitial pneumonia (IIP), or noninfectious pneumonia are a class of diffuse lung diseases. These diseases typically affect the pulmonary interstitium, although some also have a component affecting the airways (for instance, Cryptogenic organizing pneumonitis). There are seven recognized distinct subtypes of IIP.
The fibrosing pattern of NSIP has a five year survival rate of 86% to 92%, while the cellular pattern of NSIP has a 100% five year survival rate. Patients with NSIP(whether cellular or fibrosing), have a better prognosis than those with usual interstitial pneumonia (UIP).
Lung biopsies performed on patients with NSIP reveal two different disease patterns - cellular and fibrosing - which are associated with different prognoses. The cellular pattern displays chronic inflammation with minimal fibrosis. The fibrosing pattern displays interstitial fibrosis with various inflammation levels. Both patterns are uniform and lack the prominent fibroblastic foci that are found in other types of idiopathic interstitial pneumonia.
Neuroendocrine hyperplasia is a hyperplastic process that ultimately results in fibrosis of predominantly the pulmonary tree (the lungs). It is characterized by tachypnea, hypoxia, and retractions. There is no currently recognized treatment for the relentless progression of this disorder.
Perinatal asphyxia, neonatal asphyxia or birth asphyxia is the medical condition resulting from deprivation of oxygen to a newborn infant that lasts long enough during the birth process to cause physical harm, usually to the brain. Hypoxic damage can occur to most of the infant's organs (heart, lungs, liver, gut, kidneys), but brain damage is of most concern and perhaps the least likely to quickly or completely heal. In more pronounced cases, an infant will survive, but with damage to the brain manifested as either mental, such as developmental delay or intellectual disability, or physical, such as spasticity.
It results most commonly from a drop in maternal blood pressure or some other substantial interference with blood flow to the infant's brain during delivery. This can occur due to inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. Perinatal asphyxia happens in 2 to 10 per 1000 newborns that are born at term, and more for those that are born prematurely. WHO estimates that 4 million neonatal deaths occur yearly due to birth asphyxia, representing 38% of deaths of children under 5 years of age.
Perinatal asphyxia can be the cause of hypoxic ischemic encephalopathy or intraventricular hemorrhage, especially in preterm births. An infant suffering severe perinatal asphyxia usually has poor color (cyanosis), perfusion, responsiveness, muscle tone, and respiratory effort, as reflected in a low 5 minute Apgar score. Extreme degrees of asphyxia can cause cardiac arrest and death. If resuscitation is successful, the infant is usually transferred to a neonatal intensive care unit.
There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
There is considerable controversy over the diagnosis of birth asphyxia due to medicolegal reasons. Because of its lack of precision, the term is eschewed in modern obstetrics.
Pulmonary hypertension (PH or PHTN) is a condition of increased blood pressure within the arteries of the lungs. Symptoms include shortness of breath, syncope, tiredness, chest pain, swelling of the legs, and a fast heartbeat. The condition may make it difficult to exercise. Onset is typically gradual.
The cause is often unknown. Risk factors include a family history, prior blood clots in the lungs, HIV/AIDS, sickle cell disease, cocaine use, COPD, sleep apnea, living at high altitudes, and problems with the mitral valve. The underlying mechanism typically involves inflammation of the arteries in the lungs. Diagnosis involves first ruling out other potential causes.
There is no cure. Treatment depends on the type of disease. A number of supportive measures such as oxygen therapy, diuretics, and medications to inhibit clotting may be used. Medications specifically for the condition include epoprostenol, treprostinil, iloprost, bosentan, ambrisentan, macitentan, and sildenafil. A lung transplant may be an option in certain cases.
While the exact frequency of the condition is unknown, it is estimated that about 1,000 new cases occur a year in the United States. Females are more often affected than males. Onset is typically between 20 and 60 years of age. It was first identified by Ernst von Romberg in 1891.
A hemothorax is a type of pleural effusion in which blood accumulates in the pleural cavity. This excess fluid can interfere with normal breathing by limiting the expansion of the lungs. The term is from "" + "thorax".
Patients with subacute HP gradually develop a productive cough, dyspnea, fatigue, anorexia, weight loss, and pleurisy. Symptoms are similar to the acute form of the disease, but are less severe and last longer. On chest radiographs, micronodular or reticular opacities are most prominent in mid-to-lower lung zones. Findings may be present in patients who have experienced repeated acute attacks.
The subacute, or intermittent, form produces more well-formed noncaseating granulomas, bronchiolitis with or without organizing pneumonia, and interstitial fibrosis.
In chronic HP, patients often lack a history of acute episodes. They have an insidious onset of cough, progressive dyspnea, fatigue, and weight loss. This is associated with partial to complete but gradual reversibility. Avoiding any further exposure is recommended. Clubbing is observed in 50% of patients. Tachypnea, respiratory distress, and inspiratory crackles over lower lung fields often are present.
On chest radiographs, progressive fibrotic changes with loss of lung volume particularly affect the upper lobes. Nodular or ground-glass opacities are not present. Features of emphysema are found on significant chest films and CT scans.
Chronic forms reveal additional findings of chronic interstitial inflammation and alveolar destruction (honeycombing) associated with dense fibrosis. Cholesterol clefts or asteroid bodies are present within or outside granulomas.
In addition, many patients have hypoxemia at rest, and all patients desaturate with exercise.
The signs of sepsis are non-specific and include:
- Body temperature changes
- Breathing problems
- Diarrhea
- Low blood sugar (hypoglycemia)
- Reduced movements
- Reduced sucking
- Seizures
- Bradycardia
- Swollen belly area
- Vomiting
- Yellow skin and whites of the eyes (jaundice)
A heart rate above 160 can also be an indicator of sepsis, this tachycardia can present up to 24 hours before the onset of other signs.
In terms of signs and symptoms the severe form of this condition presents as acute pulmonary heart disease this may lead to death.Clinical fat embolism syndrome presents with tachypnea, elevated temperature, anuria, drowsiness, and occasionally mild neurological symptoms.A petechial rash appears on the upper anterior portion of the body, including the chest, neck, upper arm, oral mucosa and conjunctivae; it appears late and often disappears within hours.
Central nervous system signs in an affected individual include acute confusion, stupor, coma, rigidity (neurology), or convulsions; cerebral edema contributes to the neurologic deterioration.