Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Juvenile myoclonic epilepsy (JME) is an idiopathic generalized epilepsy that occurs in patients aged 8 to 20 years. Patients have normal cognition and are otherwise neurologically intact. The most common seizure is myoclonic jerks, although generalized tonic-clonic seizures and absence seizures may occur as well. Myoclonic jerks usually cluster in the early morning after awakening. The EEG reveals generalized 4–6 Hz spike wave discharges or multiple spike discharges. These patients are often first diagnosed when they have their first generalized tonic-clonic seizure later in life, when they experience sleep deprivation (e.g., freshman year in college after staying up late to study for exams). Alcohol withdrawal can also be a major contributing factor in breakthrough seizures, as well. The risk of the tendency to have seizures is lifelong; however, the majority have well-controlled seizures with anticonvulsant medication and avoidance of seizure precipitants.
Frontal lobe epilepsy, usually a symptomatic or cryptogenic localization-related epilepsy, arises from lesions causing seizures that occur in the frontal lobes of the brain. These epilepsies can be difficult to diagnose because the symptoms of seizures can easily be confused with nonepileptic spells and, because of limitations of the EEG, be difficult to "see" with standard scalp EEG.
Juvenile absence epilepsy is an idiopathic generalized epilepsy with later onset than CAE, typically in prepubertal adolescence, with the most frequent seizure type being absence seizures. Generalized tonic-clonic seizures can occur. Often, 3 Hz spike-wave or multiple spike discharges can be seen on EEG. The prognosis is mixed, with some patients going on to a syndrome that is poorly distinguishable from JME.
Tonic–clonic Seizures with repetitive sequences of stiffening and jerking of the extremities.
Myoclonic Seizures with rapid, brief contractions of muscles.
Atonic Seizures with a sudden loss of muscle tone, often resulting in sudden collapse. These are also called drop seizures.
Absence A generalized seizure characterized by staring off and occasionally some orofacial automatisms.
Myoclonic astatic Seizures that involve a myoclonic seizure followed immediately by an atonic seizure. This type of seizure is exclusive to MAE and is one of the defining characteristics of this syndrome.
Tonic Muscle stiffening or rigidity. This seizure is rare in this syndrome.
Myoclonic jerks that are not epileptic may be due to a nervous system disorder or other metabolic abnormalities that may arise in renal (e.g. hyperuraemia) and liver failure (e.g. high ammonia states).
Originally called Doose syndrome, epilepsy with myoclonic-astatic seizures accounts for ~2% of childhood epilepsies. Children with this disorder have incredibly brief (<100ms) myoclonic jerks followed by equally brief loss of muscle tone, sometimes resulting in dangerous falls. Some patients have much longer lasting seizures of this type. Many patients with this disorder also have absence seizures. This is believed to be a polygenic disorder.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve a loss of consciousness and typically happen without warning.
- Tonic-clonic seizures present with a contraction of the limbs followed by their extension, along with arching of the back for 10–30 seconds. A cry may be heard due to contraction of the chest muscles. The limbs then begin to shake in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal.
- Tonic seizures produce constant contractions of the muscles. The person may turn blue if breathing is impaired.
- Clonic seizures involve shaking of the limbs in unison.
- Myoclonic seizures involve spasms of muscles in either a few areas or generalized through the body.
- Absence seizures can be subtle, with only a slight turn of the head or eye blinking. The person often does not fall over and may return to normal right after the seizure ends, though there may also be a period of post-ictal disorientation.
- Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs bilaterally (on both sides of the body).
A seizure can last from a few seconds to more than five minutes, at which point it is known as status epilepticus. Most tonic-clonic seizures last less than two or three minutes. Absence seizures are usually around 10 seconds in duration.
Myoclonus can be described as brief jerks of the body; it can involve any part of the body, but it is mostly seen in limbs or facial muscles. The jerks are usually involuntary and can lead to falls. EEG is used to read brain wave activity. Spike activity produced from the brain is usually correlated with brief jerks seen on EMG or excessive muscle artifact. They usually occur without detectable loss of consciousness and may be generalized, regional or focal on the EEG tracing. Myclonus jerks can be epileptic or not epileptic. Epileptic myoclonus is an elementary electroclinical manifestation of epilepsy involving descending neurons, whose spatial (spread) or temporal (self-sustained repetition) amplification can trigger overt epileptic activity.
The most common type (60%) of seizures are convulsive. Of these, one-third begin as generalized seizures from the start, affecting both hemispheres of the brain. Two-thirds begin as focal seizures (which affect one hemisphere of the brain) which may then progress to generalized seizures. The remaining 40% of seizures are non-convulsive. An example of this type is the absence seizure, which presents as a decreased level of consciousness and usually lasts about 10 seconds.
Focal seizures are often preceded by certain experiences, known as auras. They include sensory (visual, hearing, or smell), psychic, autonomic, and motor phenomena. Jerking activity may start in a specific muscle group and spread to surrounding muscle groups in which case it is known as a Jacksonian march. Automatisms may occur, which are non-consciously-generated activities and mostly simple repetitive movements like smacking of the lips or more complex activities such as attempts to pick up something.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve loss of consciousness and typically happen without warning.
Tonic-clonic seizures occur with a contraction of the limbs followed by their extension along with arching of the back which lasts 10–30 seconds (the tonic phase). A cry may be heard due to contraction of the chest muscles, followed by a shaking of the limbs in unison (clonic phase). Tonic seizures produce constant contractions of the muscles. A person often turns blue as breathing is stopped. In clonic seizures there is shaking of the limbs in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal; this period is called the "postictal state" or "postictal phase." Loss of bowel or bladder control may occur during a seizure. The tongue may be bitten at either the tip or on the sides during a seizure. In tonic-clonic seizure, bites to the sides are more common. Tongue bites are also relatively common in psychogenic non-epileptic seizures.
Myoclonic seizures involve spasms of muscles in either a few areas or all over. Absence seizures can be subtle with only a slight turn of the head or eye blinking. The person does not fall over and returns to normal right after it ends. Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs on both sides of the body.
About 6% of those with epilepsy have seizures that are often triggered by specific events and are known as reflex seizures. Those with reflex epilepsy have seizures that are only triggered by specific stimuli. Common triggers include flashing lights and sudden noises. In certain types of epilepsy, seizures happen more often during sleep, and in other types they occur almost only when sleeping.
Signs of JME are brief episodes of involuntary muscle twitching occurring early in the morning or shortly before falling asleep. This does not usually result in the person falling, but rather dropping objects. These muscle twitching episodes are more common in the arms than in the legs. Other seizure types such as generalized tonic-clonic and absence seizures can also occur. Patients often report quick jerking movements in the morning that results in knocking over objects such as their morning orange juice. Clusters of myoclonic seizures can lead to absence seizures, and clusters of absence seizures can lead to generalized tonic-clonic seizures. The onset of symptoms is generally around age 10-16 although some patients can present in their 20s or even early 30s. The myoclonic jerks generally precede the generalized tonic-clonic seizures by several months. Some people with the disorder never get generalized tonic-clonic seizures (GTCs). Sleep deprivation is a major factor in triggering GTCs. College students often present with a GTC after "pulling an all-nighter." Patients with JME generally do not have other neurological problems.
The onset of seizures is between the ages of 2 and 5. EEG shows regular and irregular bilaterally synchronous 2- to 3-Hz spike-waves and polyspike patterns with a 4- to 7-Hz background. 84% of affected children show normal development prior to seizures; the remainder show moderate psychomotor retardation mainly affecting speech. Boys (74%) are more often affected than girls (Doose and Baier 1987a).
This rare epilepsy has a wide age range of presentation (from the first year of life through the early teens). This epilepsy is characterized by absence seizures concurrent with myoclonic jerks, typically occurring several times daily. The genetics of this disorder have not been delineated. Seizures from this disorder often cease within 5 years.
Dravet syndrome has been characterized by prolonged febrile and non-febrile seizures within the first year of a child’s life. This disease progresses to other seizure types like myoclonic and partial seizures, psychomotor delay, and ataxia. It is characterized by cognitive impairment, behavioral disorders, and motor deficits. Behavioral deficits often include hyperactivity and impulsiveness, and in more rare cases, autistic-like behaviors. Dravet syndrome is also associated with sleep disorders including somnolence and insomnia. The seizures experienced by people with Dravet syndrome become worse as the patient ages since the disease is not very predictable when first diagnosed. This coupled with the range of severity differing between each individual diagnosed and the resistance of these seizures to drugs has made it challenging to develop treatments.
Dravet syndrome appears during the first year of life, often beginning around six months of age with frequent febrile seizures (fever-related seizures). Children with Dravet syndrome typically experience a lagged development of language and motor skills, hyperactivity and sleep difficulties, chronic infection, growth and balance issues, and difficulty relating to others. The effects of this disorder do not diminish over time, and children diagnosed with Dravet syndrome require fully committed caretakers with tremendous patience and the ability to closely monitor them.
Febrile seizures are divided into two categories known as simple and complex. A febrile seizure would be categorized as complex if it has occurred within 24 hours of another seizure or if it lasts longer than 15 minutes. A febrile seizure lasting less than 15 minutes would be considered simple. Sometimes modest hyperthermic stressors like physical exertion or a hot bath can provoke seizures in affected individuals. However, any seizure uninterrupted after 5 minutes, without a resumption of postictal (more normal; recovery-type; after-seizure) consciousness can lead to potentially fatal status epilepticus.
The clinical manifestations of absence seizures vary significantly among patients. Impairment of consciousness is the essential symptom, and may be the only clinical symptom, but this can be combined with other manifestations. The hallmark of the absence seizures is abrupt and sudden-onset impairment of consciousness, interruption of ongoing activities, a blank stare, possibly a brief upward rotation of the eyes. If the patient is speaking, speech is slowed or interrupted; if walking, they stand transfixed; if eating, the food will stop on its way to the mouth. Usually, the patient will be unresponsive when addressed. In some cases, attacks are aborted when the patient is called. The attack lasts from a few seconds to half a minute, and evaporates as rapidly as it commenced. Absence seizures generally are not followed by a period of disorientation or lethargy (post-ictal state), in contrast to the majority of seizure disorders.
1. Absence with impairment of consciousness only as per the above description.
2. Absence with mild clonic components. Here the onset of the attack is indistinguishable from the above, but clonic components may occur in the eyelids, at the corner of the mouth, or in other muscle groups which may vary in severity from almost imperceptible movements to generalised myoclonic jerks. Objects held in the hand may be dropped.
3. Absence with atonic components. Here there may be a diminution in tone of muscles subserving posture as well as in the limbs leading to dropping of the head, occasionally slumping of the trunk, dropping of the arms, and relaxation of the grip. Rarely tone is sufficiently diminished to cause this person to fall.
4. Absence with tonic components. Here during the attack tonic muscular contraction may occur, leading to increase in muscle tone which may affect the extensor muscles or the flexor muscles symmetrically or asymmetrically. If the patient is standing, the head may be drawn backward and the trunk may arch. This may lead to retropulsion, which may cause eyelids to twitch rapidly, eyes may jerk upwards or the patients head may rock back and forth slowly, as if nodding. The head may tonically draw to one or another side.
5. Absence with automatisms. Purposeful or quasipurposeful movements occurring in the absence of awareness during an absence attack are frequent and may range from lip licking and swallowing to clothes fumbling or aimless walking. If spoken to, the patient may grunt, and when touched or tickled may rub the site. Automatisms are quite elaborate and may consist of combinations of the above described movements or may be so simple as to be missed by casual observation.
6. Absence with autonomic components. These may be pallor, and less frequently flushing, sweating, dilatation of pupils and incontinence of urine.
Mixed forms of absence frequently occur.
These seizures can happen a few times a day or in some cases hundreds of times a day, to the point that the person cannot concentrate in school or in other situations requiring sustained, concentrated attention.
These syndromes are childhood absence epilepsy, epilepsy with myoclonic absences, juvenile absence epilepsy and juvenile myoclonic epilepsy. Other proposed syndromes are Jeavons syndrome (eyelid myoclonia with absences), and genetic generalised epilepsy with phantom absences.
These types of seizures are also known to occur to patients suffering with porphyria and can be triggered by stress or other porphyrin-inducing factors.
After the active portion of a seizure (the ictal state) there is typically a period of recovery during which there is confusion, referred to as the postictal period before a normal level of consciousness returns. It usually lasts 3 to 15 minutes but may last for hours. Other common symptoms include feeling tired, headache, difficulty speaking, and abnormal behavior. Psychosis after a seizure is relatively common, occurring in 6–10% of people. Often people do not remember what happened during this time. Localized weakness, known as Todd's paralysis, may also occur after a focal seizure. When it occurs it typically lasts for seconds to minutes but may rarely last for a day or two.
The age of onset of seizures is typically between three and five, though onset can occur at an earlier or later age. The syndrome shows clear parallels to West syndrome, enough to suggest a connection.
Daily multiple seizures are typical in LGS. Also typical is the broad range of seizures that can occur, larger than that of any other epileptic syndrome. The most frequently occurring seizure type is tonic seizures, which are often nocturnal (90%); the second most frequent are myoclonic seizures, which often occur when the person is over-tired.
Atonic, atypical absence, tonic, complex partial, focalized and tonic–clonic seizures are also common. Additionally, about half of patients will have status epilepticus, usually the nonconvulsive type, which is characterized by dizziness, apathy, and unresponsiveness. The seizures can cause sudden falling (or spasms in tonic, atonic and myoclonic episodes) and/or loss of balance, which is why patients often wear a helmet to prevent head injury.
In addition to daily multiple seizures of various types, children with LGS frequently have arrested/slowed psycho-motor development and behavior disorders.
The syndrome is also characterized by an (between-seizures) EEG featuring slow spike-wave complexes.
Generalized seizures can be either absence seizures, myoclonic seizures, clonic seizures, tonic-clonic seizures or atonic seizures.
Generalized seizures occur in various seizure syndromes, including myoclonic epilepsy, familial neonatal convulsions, childhood absence epilepsy, absence epilepsy, infantile spasms (West's syndrome), Juvenile Myoclonic Epilepsy and Lennox-Gastaut syndrome.
Seizures are purely occipital and primarily manifest with elementary visual hallucinations, blindness or both.
They are usually frequent and diurnal, develop rapidly within seconds and are brief, lasting from a few seconds to 1–3 min, and, rarely, longer.
Elementary visual hallucinations are the most common and characteristic ictal symptoms, and are most likely to be the first and often the only clinical manifestation. They consist mainly of small multicoloured circular patterns that often appear in the periphery of a visual field, becoming larger and multiplying during the course of the seizure, frequently moving horizontally towards the other side.
Other occipital symptoms, such as sensory illusions of ocular movements and ocular pain, tonic deviation of the eyes, eyelid fluttering or repetitive eye closures, may occur at the onset of the seizures or appear after the elementary visual hallucinations. "Deviation of the eyes", often associated with ipsilateral turning of the head, is the most common (in about 70% of cases) nonvisual ictal symptom. It is often associated with ipsilateral turning of the head and usually starts after visual hallucinations, although it may also occur while the hallucinations still persist. It may be mild, but more often it is severe and progresses to hemiconvulsions and secondarily generalised tonic clonic seizures (GTCS). Some children may have seizures of eye deviation from the start without visual hallucinations.
"Forced eyelid closure and eyelid blinking" occur in about 10% of patients, usually at a stage at which consciousness is impaired. They signal an impending secondarily GTCS.
"Ictal blindness", appearing from the start or, less commonly, after other manifestations of occipital seizures, usually lasts for 3–5 min. It can occur alone and be the only ictal event in patients who could, at other times, have visual hallucinations without blindness.
Complex visual hallucinations, visual illusions and other symptoms resulting from more anterior ictal spreading rarely occur from the start. They may terminate in hemiconvulsions or generalised convulsions.
Ictal headache, or mainly orbital pain, may occur and often precedes visual or other ictal occipital symptoms in a small number of patients.
Consciousness is not impaired during the visual symptoms (simple focal seizures), but may be disturbed or lost in the course of the seizure, usually before eye deviation or convulsions.
Occipital seizures of ICOE-G may rarely progress to extra-occipital manifestations, such as hemiparaesthesia. Spread to produce symptoms of temporal lobe involvement is exceptional and may indicate a symptomatic cause.
Post-ictal headache, mainly diffuse, but also severe, unilateral and pulsating, or indistinguishable from migraine headache, occurs in half the patients, in 10% of whom it may be associated with nausea and vomiting.
Circadian distribution: Visual seizures are predominantly diurnal and can occur at any time of the day. Longer seizures, with or without hemi or generalised convulsions, tend to occur either during sleep, causing the patient to wake up, or after awakening. Thus, some children may have numerous diurnal visual seizures and only a few seizures that are exclusively nocturnal or occur on awakening.
Frequency of seizures: If untreated, patients experience frequent and brief visual seizures (often several every day or weekly). However, propagation to other seizure manifestations, such as focal or generalised convulsions, is much less frequent.
All tests apart from the EEG are normal. Video-EEG is the single most important procedure for the diagnosis of eyelid myoclonia with or without absences. It shows frequent high-amplitude 3–6 Hz generalized discharges of mainly polyspikes and waves. These are brief (1–6 s, commonly 2 or 3 s) and they are typically related to eye closure, i.e. they occur immediately (within 0.5–2 s) after closing the eyes in an illuminated recording room.
Eyelid myoclonia of varying severity often occurs during these EEG discharges. Photoparoxysmal discharges induced by photic stimulation occur in all untreated young patients, but may be absent in older patients or those on medication.
Sleep EEG patterns are normal and generalized discharges are more likely to increase during sleep, but may also decrease. The EEG and clinical manifestations deteriorate consistently after awakening. A normal EEG is rare, even in well-controlled patients.
Eyelid myoclonia, not the absences, is the hallmark of Jeavons syndrome.
Eyelid myoclonia consists of marked jerking of the eyelids often associated with jerky upwards deviation of the eyeballs and retropulsion of the head (eyelid myoclonia without absences). This may be associated with or followed by mild impairment of consciousness (eyelid myoclonia with absences). The seizures are brief (3–6 s), and occur mainly and immediately after closing of the eyes (eye closure) and consistently many times a day. All patients are photosensitive.
Generalised tonic-clonic seizures, either induced by lights or spontaneous, are probably inevitable in the long term and are provoked particularly by precipitating factors (sleep deprivation, alcohol) and inappropriate AED modifications.
Myoclonic jerks of the limbs may occur, but are infrequent and random.
Eyelid myoclonic status epilepticus, either spontaneous (mainly on awakening) or photically induced, occurs in a fifth of patients. It consists of repetitive and discontinuous episodes of eyelid myoclonia with mild absence, rather than continuous non- convulsive absence status epilepticus.
Onset is typically in childhood with a peak at age 6–8 years (range 2–14 years). There is a twofold preponderance of girls. Prevalence and incidence is probably low.
The hallmark characteristic of PCDH19 gene-related epilepsy is early-onset cluster seizures that often cause cyanotic spells, which start in infancy or early childhood. The onset of the first cluster of seizures usually coincides with a fever (febrile seizures), however subsequent seizures may be febrile or afebrile. The seizure clusters are generally brief seizures, lasting 1–5 minutes, often accompanied by fearful screaming observed in 63% of girls. These cluster seizures can occur more than 10 times a day over several days, with varying amounts of time between seizure clusters.
Over time, children with PCDH19 gene-related epilepsy tend to exhibit multiple seizure types, including focal, generalized tonic-clonic, tonic, atonic, myclonus, and absence seizures. In a small study of 35 female patients with PCDH19 gene-related epilepsy, rare episodes of status epilepticus occurred in about 30% of patients in the early course of the disorder.
In PCDH19 gene-related epilepsy, the seizures are often refractory to treatment, especially in infancy and childhood. Additionally, seizures are usually characterized by persistence of cluster seizures, with variable frequency. In a study of 35 female patients with PCDH19 gene-related epilepsy, approximately 30% had become seizure free in the girl's childhood (mean age of 12 years), yet some continued into adulthood. In the same study, a few patients still had recurrent cluster seizures that evolved into status epilepticus in childhood or early adolescence.
The condition may be difficult to diagnose. The subject may be unaware they have a seizure disorder. To others, the involuntary movements made during sleep may appear no different from those typical of normal sleep.People who have nocturnal seizures may notice unusual conditions upon awakening in the morning, such as a headache, having wet the bed, having bitten the tongue, a bone or joint injury, muscle strains or weakness, fatigue, or lightheadedness. Others may notice unusual mental behaviors consistent with the aftermath of a seizure. Objects near the bed may have been knocked to the floor, or the subject may be surprised to find themselves on the floor.
There are many risks associated with nocturnal seizures including concussion, suffocation and sudden unexpected death (SUDEP).
"Focal aware" means that the level of consciousness is not altered during the seizure. In temporal lobe epilepsy, a focal seizure usually causes abnormal sensations only.
These may be:
- Sensations such as déjà vu (a feeling of familiarity), jamais vu (a feeling of unfamiliarity)
- Amnesia; or a single memory or set of memories
- A sudden sense of unprovoked fear and anxiety
- Nausea
- Auditory, visual, olfactory, gustatory, or tactile hallucinations.
- Visual distortions such as macropsia and micropsia
- Dissociation or derealisation
- Synesthesia (stimulation of one sense experienced in a second sense) may transpire.
- Dysphoric or euphoric feelings, fear, anger, and other emotions may also occur. Often, the patient cannot describe the sensations.
Olfactory hallucinations often seem indescribable to patients beyond "pleasant" or "unpleasant".
Focal aware seizures are often called "auras" when they serve as a warning sign of a subsequent seizure. Regardless an "aura" is actually a seizure itself, and such a focal seizure may or may not progress to a focal impaired awareness seizure. People who only experience focal aware seizures may not recognize what they are, nor seek medical care.
Focal aware seizures are seizures which affect only a small region of the brain, often the temporal lobes or structures found there such as the hippocampi. People who have focal aware seizures remain conscious. Focal aware seizures often precede larger focal impaired awareness seizures, where the abnormal electrical activity spreads to a larger area of the brain. This can result in a tonic-clonic seizure.
- Presentation
Focal onset aware seizures are a very subjective experience, and the symptoms vary greatly between people. This is due to the varying locations of the brain the seizures originate in e.g.: Rolandic. A focal aware seizure may go unnoticed by others or shrugged off by the sufferer as merely a "funny turn." Focal aware seizures usually start suddenly and are very brief, typically lasting 60 to 120 seconds.
Some common symptoms of a focal onset aware seizure, when the person is awake, are:
- preserved consciousness
- sudden and inexplicable feelings of fear, anger, sadness, happiness or nausea
- sensations of falling or movement
- experiencing of unusual feelings or sensations
- altered sense of hearing, smelling, tasting, seeing, and tactile perception (sensory illusions or hallucinations), or feeling as though the environment is not real (derealization) or dissociation from the environment or self (depersonalization)
- a sense of spatial distortion—things close by may appear to be at a distance
- déjà vu (familiarity) or jamais vu (unfamiliarity)
- laboured speech or inability to speak at all
- usually the event is remembered in detail
When the seizure occurs during sleep, the person will often become semi-conscious and act out a dream they were having while engaging with the real environment as normal. Objects and people usually appear normal or only slightly distorted to them, and will be able to communicate with them on an otherwise normal level.
However, since the person is still acting in the dream-like state from which they woke, they will assimilate any hallucinations or delusions into their communication, often speaking to a hallucinatory person or speaking of events or thoughts normally pertaining to the dream they were having or other hallucination.
While asleep symptoms include:
- onset usually in REM sleep
- dream like state
- appearance of full consciousness
- hallucinations or delusions
- behavior or visions typical in dreams
- ability to engage with the environment and other people as in full consciousness, though often behaving abnormally, erratically, or failing to be coherent
- complete amnesia or assimilating the memory as though it was a normal dream on regaining full consciousness
Although hallucinations may occur during focal aware seizures they are differentiated from psychotic symptoms by the fact that the person is usually aware that the hallucinations are not real.
- Jacksonian march
Jacksonian march or Jacksonian seizure is a phenomenon where a focal aware seizure spreads from the distal part of the limb toward the face (on same side of body). They involve a progression of the location of the seizure in the brain, which leads to a "march" of the motor presentation of symptoms.
Jacksonian seizures are initiated with abnormal electrical activity within the primary motor cortex. They are unique in that they travel through the primary motor cortex in succession, affecting the corresponding muscles, often beginning with the fingers. This is felt as a tingling sensation, or a feeling of waves through the fingers when touched together. It then affects the hand and moves on to more proximal areas on the same side of body. Symptoms often associated with a Jacksonian seizure are sudden head and eye movements, tingling, numbness, smacking of the lips, and sudden muscle contractions. Most of the time any one of these actions can be seen as normal movements, without being associated with the seizure occurring. They occur at no particular moment and last only briefly. They may result in secondary generalized seizure involving both hemispheres. They can also start at the feet, manifesting as tingling or pins and needles, and there are painful cramps in the foot muscles, due to the signals from the brain. Because it is a partial seizure, the postictal state is of normal consciousness .