Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of generalized hypoxia depend on its severity and acceleration of onset.
In the case of altitude sickness, where hypoxia develops gradually, the symptoms include fatigue, numbness / tingling of extremities, nausea, and anoxia. In severe hypoxia, or hypoxia of very rapid onset, ataxia, confusion / disorientation / hallucinations / behavioral change, severe headaches / reduced level of consciousness, papilloedema, breathlessness, pallor, tachycardia, and pulmonary hypertension eventually leading to the late signs cyanosis, slow heart rate / cor pulmonale, and low blood pressure followed by death.
Because hemoglobin is a darker red when it is not bound to oxygen (deoxyhemoglobin), as opposed to the rich red color that it has when bound to oxygen (oxyhemoglobin), when seen through the skin it has an increased tendency to reflect blue light back to the eye. In cases where the oxygen is displaced by another molecule, such as carbon monoxide, the skin may appear 'cherry red' instead of cyanotic. Hypoxia can cause premature birth, and injure the liver, among other deleterious effects.
If tissue is not being perfused properly, it may feel cold and appear pale; if severe, hypoxia can result in cyanosis, a blue discoloration of the skin. If hypoxia is very severe, a tissue may eventually become gangrenous.
Extreme pain may also be felt at or around the site.
In an acute context, hypoxemia can cause symptoms such as those in respiratory distress. These include breathlessness, an increased rate of breathing, use of the chest and abdominal muscles to breathe, and lip pursing.
Chronic hypoxemia may be compensated or uncompensated. The compensation may cause symptoms to be overlooked initially, however, further disease or a stress such as any increase in oxygen demand may finally unmask the existing hypoxemia. In a compensated state, blood vessels supplying less-ventilated areas of the lung may selectively contract, to redirect the blood to areas of the lungs which are better ventilated. However, in a chronic context, and if the lungs are not well ventilated generally, this mechanism can result in pulmonary hypertension, overloading the right ventricle of the heart and causing cor pulmonale and right sided heart failure. Polycythemia can also occur. In children, chronic hypoxemia may manifest as delayed growth, neurological development and motor development and decreased sleep quality with frequent sleep arousals.
Other symptoms of hypoxemia may include cyanosis, digital clubbing, and symptoms that may relate to the cause of the hypoxemia, including cough and hemoptysis.
Serious hypoxemia occurs (1) when the partial pressure of oxygen in blood is less than 60 mm Hg, (the beginning of the steep portion of the oxygen–haemoglobin dissociation curve, where a small decrease in the partial pressure of oxygen results in a large decrease in the oxygen content of the blood); or (2) when hemoglobin oxygen saturation is less than 90%. Severe hypoxia can lead to respiratory failure
"Hypoxemia" refers to low oxygen in the blood, and the more general term "hypoxia" is an abnormally low oxygen content in any tissue or organ, or the body as a whole. Hypoxemia can cause hypoxia (hypoxemic hypoxia), but hypoxia can also occur via other mechanisms, such as anemia.
Hypoxemia is usually defined in terms of reduced partial pressure of oxygen (mm Hg) in arterial blood, but also in terms of reduced content of oxygen (ml oxygen per dl blood) or percentage saturation of hemoglobin (the oxygen binding protein within red blood cells) with oxygen, which is either found singly or in combination.
While there is general agreement that an arterial blood gas measurement which shows that the partial pressure of oxygen is lower than normal constitutes hypoxemia, there is less agreement concerning whether the oxygen content of blood is relevant in determining hypoxemia. This definition would include oxygen carried by hemoglobin. The oxygen content of blood is thus sometimes viewed as a measure of tissue delivery rather than hypoxemia.
Just as extreme hypoxia can be called anoxia, extreme hypoxemia can be called anoxemia.
The brain requires approximately 3.3 ml of oxygen per 100 g of brain tissue per minute. Initially the body responds to lowered blood oxygen by redirecting blood to the brain and increasing cerebral blood flow. Blood flow may increase up to twice the normal flow but no more. If the increased blood flow is sufficient to supply the brain's oxygen needs then no symptoms will result.
However, if blood flow cannot be increased or if doubled blood flow does not correct the problem, symptoms of cerebral hypoxia will begin to appear. Mild symptoms include difficulties with complex learning tasks and reductions in short-term memory. If oxygen deprivation continues, cognitive disturbances, and decreased motor control will result. The skin may also appear bluish (cyanosis) and heart rate increases. Continued oxygen deprivation results in fainting, long-term loss of consciousness, coma, seizures, cessation of brain stem reflexes, and brain death.
Objective measurements of the severity of cerebral hypoxia depend on the cause. Blood oxygen saturation may be used for hypoxic hypoxia, but is generally meaningless in other forms of hypoxia. In hypoxic hypoxia 95–100% saturation is considered normal; 91–94% is considered mild and 86–90% moderate. Anything below 86% is considered severe.
It should be noted that cerebral hypoxia refers to oxygen levels in brain tissue, not blood. Blood oxygenation will usually appear normal in cases of hypemic, ischemic, and hystoxic cerebral hypoxia. Even in hypoxic hypoxia blood measures are only an approximate guide; the oxygen level in the brain tissue will depend on how the body deals with the reduced oxygen content of the blood.
Cerebral hypoxia can be caused by any event that severely interferes with the brain's ability to receive or process oxygen. This event may be internal or external to the body. Mild and moderate forms of cerebral hypoxia may be caused by various diseases that interfere with breathing and blood oxygenation. Severe asthma and various sorts of anemia can cause some degree of diffuse cerebral hypoxia. Other causes include status epilepticus, work in nitrogen-rich environments, ascent from a deep-water dive, flying at high altitudes in an unpressurized cabin without supplemental oxygen, and intense exercise at high altitudes prior to acclimatization.
Severe cerebral hypoxia and anoxia is usually caused by traumatic events such as choking, drowning, strangulation, smoke inhalation, drug overdoses, crushing of the trachea, status asthmaticus, and shock. It is also recreationally self-induced in the fainting game and in erotic asphyxiation.
- Transient ischemic attack (TIA), is often referred to as a "mini-stroke". The American Heart Association and American Stroke Association (AHA/ASA) refined the definition of transient ischemic attack. TIA is now defined as a transient episode of neurologic dysfunction caused by focal brain, spinal cord, or retinal ischemia, without acute infarction. The symptoms of a TIA can resolve within a few minutes, unlike a stroke. TIAs share the same underlying etiology as strokes; a disruption of cerebral blood flow. TIAs and strokes present with the same symptoms such as contralateral paralysis (opposite side of body from affected brain hemisphere), or sudden weakness or numbness. A TIA may cause sudden dimming or loss of vision, aphasia, slurred speech, and mental confusion. The symptoms of a TIA typically resolve within 24 hours, unlike a stroke. Brain injury may still occur in a TIA lasting only a few minutes. Having a TIA is a risk factor for eventually having a stroke.
- Silent stroke is a stroke which does not have any outward symptoms, and the patient is typically unaware they have suffered a stroke. Despite its lack of identifiable symptoms, a silent stroke still causes brain damage and places the patient at increased risk for a major stroke in the future. In a broad study in 1998, more than 11 million people were estimated to have experienced a stroke in the United States. Approximately 770,000 of these strokes were symptomatic and 11 million were first-ever silent MRI infarcts or hemorrhages. Silent strokes typically cause lesions which are detected via the use of neuroimaging such as fMRI. The risk of silent stroke increases with age but may also affect younger adults. Women appear to be at increased risk for silent stroke, with hypertension and current cigarette smoking being predisposing factors.
Situations that can cause asphyxia include but are not limited to: the constriction or obstruction of airways, such as from asthma, laryngospasm, or simple blockage from the presence of foreign materials; from being in environments where oxygen is not readily accessible: such as underwater, in a low oxygen atmosphere, or in a vacuum; environments where sufficiently oxygenated air is present, but cannot be adequately breathed because of air contamination such as excessive smoke.
Other causes of oxygen deficiency include
but are not limited to:
- Acute respiratory distress syndrome
- Carbon monoxide inhalation, such as that from a car exhaust and the smoke's emission from a lighted cigarette: carbon monoxide has a higher affinity than oxygen to the hemoglobin in the blood's red blood corpuscles, bonding with it tenaciously, and, in the process, displacing oxygen and preventing the blood from transporting oxygen around the body
- Contact with certain chemicals, including pulmonary agents (such as phosgene) and blood agents (such as hydrogen cyanide)
- Drowning
- Drug overdose
- Exposure to extreme low pressure or vacuum to the pattern (see space exposure)
- Hanging, specifically suspension or short drop hanging
- Self-induced hypocapnia by hyperventilation, as in shallow water or deep water blackout and the choking game
- Inert gas asphyxiation
- Congenital central hypoventilation syndrome, or primary alveolar hypoventilation, a disorder of the autonomic nervous system in which a patient must consciously breathe; although it is often said that persons with this disease will die if they fall asleep, this is not usually the case
- Respiratory diseases
- Sleep apnea
- A seizure which stops breathing activity
- Strangling
- Breaking the wind pipe.
- Prolonged exposure to chlorine gas
Asphyxia or asphyxiation is a condition of severely deficient supply of oxygen to the body that arises from abnormal breathing. An example of asphyxia is choking. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that can induce asphyxia, all of which are characterized by an inability of an individual to acquire sufficient oxygen through breathing for an extended period of time. Asphyxia can cause coma or death.
In 2015 about 9.8 million cases of unintentional suffocation occurred which resulted in 35,600 deaths. The word asphyxia is from Ancient Greek "without" and , "squeeze" (throb of heart).
Disorders like congenital central hypoventilation syndrome (CCHS) and ROHHAD (rapid-onset obesity, hypothalamic dysfunction, hypoventilation, with autonomic dysregulation) are recognized as conditions that are associated with hypoventilation. CCHS may be a significant factor in some cases of sudden infant death syndrome (SIDS), often termed "cot death" or "crib death".
The opposite condition is hyperventilation (too much ventilation), resulting in low carbon dioxide levels (hypocapnia), rather than hypercapnia.
Respiratory acidosis can be acute or chronic.
- In "acute respiratory acidosis", the "Pa"CO is elevated above the upper limit of the reference range (over 6.3 kPa or 45 mm Hg) with an accompanying acidemia (pH <7.36).
- In "chronic respiratory acidosis", the "Pa"CO is elevated above the upper limit of the reference range, with a normal blood pH (7.35 to 7.45) or near-normal pH secondary to renal compensation and an elevated serum bicarbonate (HCO >30 mm Hg).
Cyanosis is defined as a bluish discoloration, especially of the skin and mucous membranes, due to excessive concentration of deoxyhemoglobin in the blood caused by deoxygenation.
Cyanosis is divided into two main types: Central (around the core, lips, and tongue) and Peripheral (only the extremities or fingers).
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction related to asthma or chronic obstructive pulmonary disease (COPD) exacerbation.
Hypoxic hypoxia is a result of insufficient oxygen available to the lungs. A blocked airway, a drowning or a reduction in partial pressure (high altitude above 10,000 feet) are examples of how lungs can be deprived of oxygen. Some medical examples are abnormal pulmonary function or respiratory obstruction. Hypoxic hypoxia is seen in patients suffering from chronic obstructive pulmonary diseases (COPD), neuromuscular diseases or interstitial lung disease.
Central cyanosis is often due to a circulatory or ventilatory problem that leads to poor blood oxygenation in the lungs. It develops when arterial oxygen saturation drops to ≤85% or ≤75%.
Acute cyanosis can be as a result of asphyxiation or choking, and is one of the definite signs that respiration is being blocked.
Central cyanosis may be due to the following causes:
1. Central nervous system (impairing normal ventilation):
- Intracranial hemorrhage
- Drug overdose (e.g. heroin)
- Tonic–clonic seizure (e.g. grand mal seizure)
2. Respiratory system:
- Pneumonia
- Bronchiolitis
- Bronchospasm (e.g. asthma)
- Pulmonary hypertension
- Pulmonary embolism
- Hypoventilation
- Chronic obstructive pulmonary disease, or COPD (emphysema)
3. Cardiovascular diseases:
- Congenital heart disease (e.g. Tetralogy of Fallot, right to left shunts in heart or great vessels)
- Heart failure
- Valvular heart disease
- Myocardial infarction
4. Blood:
- Methemoglobinemia * Note this causes "spurious" cyanosis, in that, since methemoglobin appears blue, the patient can appear cyanosed even in the presence of a normal arterial oxygen level.
- Polycythaemia
- Congenital cyanosis (HbM Boston) arises from a mutation in the α-codon which results in a change of primary sequence, H → Y. Tyrosine stabilises the Fe(III) form (oxyhaemoglobin) creating a permanent T-state of Hb.
5. Others:
- High altitude, cyanosis may develop in ascents to altitudes >2400 m.
- Hypothermia
- Obstructive sleep apnea
Early symptoms of high-altitude cerebral edema (HACE) generally correspond with those of moderate to severe acute mountain sickness (AMS). Initial symptoms of HACE commonly include confusion, loss of consciousness, fever, ataxia, photophobia, rapid heart beat, lassitude, and an altered mental state. Sufferers generally attempt to cease physical activities, regardless of their necessity for survival. Severe headaches develop and sufferers lose the ability to sit up. Retinal venous dilation occurs in 59% of people with HACE. Rarer symptoms include brisk deep tendon reflexes, retinal hemorrhages, blurred vision, extension plantar reflexes, and ocular paralysis. Cranial nerve palsies occur in some unusual cases.
In the bestselling 1996 non-fiction book "Into Thin Air: A Personal Account of the Mt. Everest Disaster", Jon Krakauer describes the effects of HACE upon Dale Kruse, a forty-four-year-old dentist and one of the members of Scott Fischer's team:
‘Kruse was having an incredibly difficult time simply trying to dress himself. He put his climbing harness on inside out, threaded it through the fly of his wind suit, and failed to fasten the buckle; fortunately, Fisher and Neal Beidleman noticed the screwup before Kruse started to descend. "If he'd tried to rappel down the ropes like that," says Beidleman, "he would have immediately popped out of his harness and fallen to the bottom of the Lhotse Face."
‘"It was like I was very drunk," Kruse recollects. "I couldn't walk without stumbling, and completely lost the ability to think or speak. It was a really strange feeling. I'd have some word in my mind, but I couldn't figure out how to bring it to my lips. So Scott and Neal had to get me dressed and make sure my harness was on correctly, then Scott lowered me down the fixed ropes." By the time Kruse arrived in Base Camp, he says, "it was still another three or four days before I could walk from my tent to the mess tent without stumbling all over the place."’
Patients with HACE have an elevated white blood cell count, but otherwise their blood count and biochemistry are normal. If a lumbar puncture is performed, it will show normal cerebral spinal fluid and cell counts but an increase in pressure. In one study, CT scans of patients with HACE exhibited ventricle compression and low density in the cerebellum. Only a few autopsies have been performed on fatal cases of HACE; they showed swollen gyri, spongiosis of white matter, and compressed sulci. There was some variation between individuals, and the results may not be typical of HACE deaths.
Inert gas asphyxiation is a form of asphyxiation which results from breathing a physiologically inert gas in the absence of oxygen, or a low amount of oxygen, rather than atmospheric air (which is largely composed of nitrogen and oxygen). Examples of physiologically inert gases, which have caused accidental or deliberate death by this mechanism, are: argon, helium, nitrogen and methane. The term "physiologically inert" is used to indicate a gas which has no toxic or anesthetic properties and does not act upon the heart or hemoglobin. Instead, the gas acts as a simple diluent to reduce oxygen concentration in inspired gas and blood to dangerously low levels, thereby eventually depriving all cells in the body of oxygen.
According to the U.S. Chemical Safety and Hazard Investigation Board, in humans, "breathing an oxygen deficient atmosphere can have serious and immediate effects, including unconsciousness after only one or two breaths. The exposed person has no warning and cannot sense that the oxygen level is too low." In the US, at least 80 people died due to accidental nitrogen asphyxiation between 1992 and 2002. Hazards with inert gases and the risks of asphyxiation are well established.
An occasional cause of accidental death in humans, inert gas asphyxia with gases including helium, nitrogen, methane, and argon, has been used as a suicide method. Inert gas asphyxia has been advocated by proponents of euthanasia, using a gas-retaining plastic hood device colloquially referred to as a suicide bag.
Nitrogen asphyxiation has been suggested by a number of lawmakers and other advocates as a more humane way to carry out capital punishment. In April 2015, the Oklahoma Governor Mary Fallin signed a bill authorizing nitrogen asphyxiation as an alternative execution method in cases where the state's preferred method of lethal injection was not available as an option.
Hypoventilation may be caused by:
- A medical condition such as stroke affecting the brainstem
- Voluntary breath-holding or underbreathing, for example, hypoventilation training or Buteyko
- Medication or drugs, typically when taken in accidental or intentional overdose. Opioids in particular are known to cause respiratory depression. Examples of opioids include pharmaceuticals such as oxycodone and hydromorphone.
- Hypocapnia, which stimulates hypoventilation
- Chronic mountain sickness, a mechanism to conserve energy.
Intrauterine hypoxia occurs when the fetus is deprived of an adequate supply of oxygen. It may be due to a variety of reasons such as prolapse or occlusion of the umbilical cord, placental infarction and maternal smoking. Intrauterine growth restriction (IUGR) may cause or be the result of hypoxia. Intrauterine hypoxia can cause cellular damage that occurs within the central nervous system (the brain and spinal cord). This results in an increased mortality rate, including an increased risk of sudden infant death syndrome (SIDS). Oxygen deprivation in the fetus and neonate have been implicated as either a primary or as a contributing risk factor in numerous neurological and neuropsychiatric disorders such as epilepsy, ADHD, eating disorders and cerebral palsy.
High-altitude cerebral edema (HACE) is a medical condition in which the brain swells with fluid because of the physiological effects of traveling to a high altitude. It generally appears in patients who have acute mountain sickness and involves disorientation, lethargy, and nausea among other symptoms. It occurs when the body fails to acclimatize while ascending to a high altitude.
It appears to be a vasogenic edema (fluid penetration of the blood–brain barrier), although cytotoxic edema (cellular retention of fluids) may play a role as well. Individuals with the condition must immediately descend to a lower altitude or coma and death can occur. Patients are usually given supplemental oxygen and dexamethasone as well.
HACE can be prevented by ascending to heights slowly to allow the body more time to acclimatize. Acetazolamide also helps prevent the condition. Untreated patients usually die within 48 hours. Those who receive treatment may take weeks to fully recover. It is a rare condition, occurring in less than one percent of people who ascend to . First described in 1913, little was known about the cause of the condition until MRI studies were performed in the 1990s.
When humans breathe in an asphyxiant gas, such as pure nitrogen, helium, neon, argon, sulfur hexafluoride, methane, or any other physiologically inert gas(es), they exhale carbon dioxide without re-supplying oxygen. Physiologically inert gases (those that have no toxic effect, but merely dilute oxygen) are generally free of odor and taste. As such, the human subject detects little abnormal sensation as the oxygen level falls. This leads to asphyxiation (death from lack of oxygen) without the painful and traumatic feeling of suffocation (the hypercapnic alarm response, which in humans arises mostly from carbon dioxide levels rising), or the side effects of poisoning. In scuba diving rebreather accidents, there is often little sensation but euphoria—however, a slow decrease in oxygen breathing gas content has effects which are quite variable. By contrast, suddenly breathing pure inert gas causes oxygen levels in the blood to fall precipitously, and may lead to unconsciousness in only a few breaths, with no symptoms at all.
Some animal species are better equipped than humans to detect hypoxia, and these species are more uncomfortable in low-oxygen environments that result from inert gas exposure.
There are various causes for intrauterine hypoxia (IH). The most preventable cause is maternal smoking. Cigarette smoking by expectant mothers has been shown to have a wide variety of deleterious effects on the developing fetus. Among the negative effects are carbon monoxide induced tissue hypoxia and placental insufficiency which causes a reduction in blood flow from the uterus to the placenta thereby reducing the availability of oxygenated blood to the fetus. Placental insufficiency as a result of smoking has been shown to have a causal effect in the development of pre-eclampsia. While some previous studies have suggested that carbon monoxide from cigarette smoke may have a protective effect against preeclampsia, a recent study conducted by the Genetics of Pre-Eclampsia Consortium (GOPEC) in the United Kingdom found that smokers were five times more likely to develop pre-eclampsia.
Nicotine alone has been shown to be a teratogen which affects the autonomic nervous system, leading to increased susceptibility to hypoxia-induced brain damage.
Maternal anemia in which smoking has also been implicated is another factor associated with IH/BA. Smoking by expectant mothers causes a decrease in maternal nucleated red blood cells (NRBC), thereby reducing the amount of red blood cells available for oxygen transport.
The perinatal brain injury occurring as a result of birth asphyxia, manifesting within 48 hours of birth, is a form of hypoxic ischemic encephalopathy.
Apnea of prematurity can be readily identified from other forms of infant apnea such as obstructive apnea, hypoventilation syndromes, breathing regulation issues during feeding, and reflux associated apnea with an infant pneumogram or infant apnea/sleep study.
Apnea of prematurity is defined as cessation of breathing by a premature infant that lasts for more than 20 seconds and/or is accompanied by hypoxia or bradycardia. Apnea is traditionally classified as either "obstructive, central, or mixed". Obstructive apnea may occur when the infant's neck is hyperflexed or conversely, hyperextended. It may also occur due to low pharyngeal muscle tone or to inflammation of the soft tissues, which can block the flow of air though the pharynx and vocal cords. Central apnea occurs when there is a lack of respiratory effort. This may result from central nervous system immaturity, or from the effects of medications or illness. Many episodes of apnea of prematurity may start as either obstructive or central, but then involve elements of both, becoming mixed in nature.
Since oxygen is carried to tissues in the blood, insufficient blood supply causes tissue to become starved of oxygen. In the highly aerobic tissues of the heart and brain, irreversible damage to tissues can occur in as little as 3–4 minutes at body temperature. The kidneys are also quickly damaged by loss of blood flow (renal ischemia). Tissues with slower metabolic rates may undergo irreversible damage after 20 minutes.
Clinical manifestations of acute limb ischemia (which can be summarized as the "six P's") include pain, pallor, pulseless, paresthesia, paralysis, and poikilothermia.
Without immediate intervention, ischemia may progress quickly to tissue necrosis and gangrene within a few hours. Paralysis is a very late sign of acute arterial ischemia and signals the death of nerves supplying the extremity. Foot drop may occur as a result of nerve damage. Because nerves are extremely sensitive to hypoxia, limb paralysis or ischemic neuropathy may persist after revascularization and may be permanent.
CHS is associated with respiratory arrests during sleep and, in some cases, to neuroblastoma (tumors of the sympathetic ganglia), Hirschsprung disease (partial agenesis of the enteric nervous system), dysphagia (difficulty swallowing) and anomalies of the pupilla. Other symptoms include darkening of skin color from inadequate amounts of oxygen, drowsiness, fatigue, headaches, and an inability to sleep at night. Those suffering from Ondine's curse also have a sensitivity to sedatives and narcotics, which makes respiration even more difficult. A low concentration of oxygen in the red blood cells also may cause hypoxia-induced pulmonary vasoconstriction and pulmonary hypertension, culminating in cor pulmonale or a failure of the right side of the heart. Associated complications may also include gastro-esophageal reflux, ophthalmologic issues, seizures, recurrent pneumonia, developmental delays, learning disabilities and episodes of fainting and temperature disregulation.