Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of cardiogenic shock include:
- Distended jugular veins due to increased jugular venous pressure
- Weak or absent pulse
- Abnormal heart rhythms, often a fast heart rate
- Pulsus paradoxus in case of tamponade
- Reduced blood pressure
Clinical symptoms may not be present until 10–20% of total whole-blood volume is lost.
Hypovolemia can be recognized by tachycardia, diminished blood pressure, and the absence of perfusion as assessed by skin signs (skin turning pale) and/or capillary refill on forehead, lips and nail beds. The patient may feel dizzy, faint, nauseated, or very thirsty. These signs are also characteristic of most types of shock.
Note that in children compensation can result in an artificially high blood pressure despite hypovolemia. Children will typically compensate (maintain blood pressure despite loss of blood volume) for a longer period than adults, but will deteriorate rapidly and severely once they do begin to decompensate. This is another reason (aside from initial lower blood volume) that even the possibility of internal bleeding in children should almost always be treated aggressively.
Obvious signs of external bleeding should be noted while remembering that people can bleed to death internally without any external blood loss. ("Blood on the floor, plus 4 more" = intrathoracic, intraperitoneal, retroperitoneal, pelvis/thigh)
There should be considered possible mechanisms of injury that may have caused internal bleeding, such as ruptured or bruised internal organs. If trained to do so and if the situation permits, there should be conducted a secondary survey and checked the chest and abdomen for pain, deformity, guarding, discoloration or swelling. Bleeding into the abdominal cavity can cause the classical bruising patterns of Grey Turner's sign or Cullen's sign.
Hypovolemia is a direct loss of effective circulating blood volume leading to:
- A rapid, weak, thready pulse due to decreased blood flow combined with tachycardia
- Cool, clammy skin due to vasoconstriction and stimulation of vasoconstriction
- Rapid and shallow breathing due to sympathetic nervous system stimulation and acidosis
- Hypothermia due to decreased perfusion and evaporation of sweat
- Thirst and dry mouth, due to fluid depletion
- Cold and mottled skin (Livedo reticularis), especially extremities, due to insufficient perfusion of the skin
The severity of hemorrhagic shock can be graded on a 1–4 scale on the physical signs. This approximates to the effective loss of blood volume. The "shock index" (heart rate divided by systolic blood pressure) is a stronger predictor of the impact of blood loss than heart rate and blood pressure alone. This relationship has not been well established in pregnancy-related bleeding.
Common causes of hypovolemia are
- Loss of blood (external or internal bleeding or blood donation)
- Loss of plasma (severe burns and lesions discharging fluid)
- Loss of body sodium and consequent intravascular water; e.g. diarrhea or vomiting
Excessive sweating is not a cause of hypovolemia, because the body eliminates significantly more water than sodium.
The primary symptoms of hypotension are lightheadedness or dizziness.
If the blood pressure is sufficiently low, fainting may occur.
Low blood pressure is sometimes associated with certain symptoms, many of which are related to causes rather than effects of hypotension:
- chest pain
- shortness of breath
- irregular heartbeat
- fever higher than 38.3 °C (101 °F)
- headache
- stiff neck
- severe upper back pain
- cough with sputum
- Prolonged diarrhea or vomiting
- dyspepsia (indigestion)
- dysuria (painful urination)
- adverse effect of medications
- acute, life-threatening allergic reaction
- seizures
- loss of consciousness
- profound fatigue
- temporary blurring or loss of vision
- Black tarry stools
Hypotension is low blood pressure, especially in the arteries of the systemic circulation. Blood pressure is the force of blood pushing against the walls of the arteries as the heart pumps out blood. A systolic blood pressure of less than 90 millimeters of mercury (mm Hg) or diastolic of less than 60 mm Hg is generally considered to be hypotension. However, in practice, blood pressure is considered too low only if noticeable symptoms are present.
Hypotension is the opposite of hypertension, which is high blood pressure. It is best understood as a physiological state, rather than a disease. Severely low blood pressure can deprive the brain and other vital organs of oxygen and nutrients, leading to a life-threatening condition called shock.
For some people who exercise and are in top physical condition, low blood pressure is a sign of good health and fitness.
For many people, excessively low blood pressure can cause dizziness and fainting or indicate serious heart, endocrine or neurological disorders.
Treatment of hypotension may include the use of intravenous fluids or vasopressors. When using vasopressors, trying to achieve a mean arterial pressure (MAP) of greater than 70 mmHg does not appear to result in better outcomes than trying to achieve a MAP of greater than 65 mm Hg in adults.
In those with low volume or hypovolemia:
- Inadequate intake of free water associated with total body sodium depletion. Typically in elderly or otherwise disabled patients who are unable to take in water as their thirst dictates and also are sodium depleted. This is the most common cause of hypernatremia.
- Excessive losses of water from the urinary tract – which may be caused by glycosuria, or other osmotic diuretics – leads to a combination of sodium and free water losses.
- Water losses associated with extreme sweating.
- Severe watery diarrhea
Congestive heart failure is the most common result of fluid overload. Also, it may be associated with hyponatremia (hypervolemic hyponatremia).
The excess fluid, primarily salt and water, builds up in various locations in the body and leads to an increase in weight, swelling in the legs and arms (peripheral edema), and/or fluid in the abdomen (ascites). Eventually, the fluid enters the air spaces in the lungs (pulmonary edema) reduces the amount of oxygen that can enter the blood, and causes shortness of breath (dyspnea) or enters pleural space by transudation (pleural effusion which also causes dyspnea), which is the best indicator of estimating central venous pressure is increased. It can also cause swelling of the face. Fluid can also collect in the lungs when lying down at night, possibly making nighttime breathing and sleeping difficult (paroxysmal nocturnal dyspnea).
Signs and symptoms of hyponatremia include nausea and vomiting, headache, short-term memory loss, confusion, lethargy, fatigue, loss of appetite, irritability, muscle weakness, spasms or cramps, seizures, and decreased consciousness or coma. The presence and severity of signs and symptoms are related to the level of salt in the blood, with lower levels of plasma sodium associated with more severe symptoms. However, emerging data suggest that mild hyponatremia (plasma sodium levels at 131–135 mmol/L) is associated with numerous complications or subtle, presently unrecognized symptoms (for example, increased falls, altered posture and gait, reduced attention).
Neurological symptoms typically occur with very low levels of plasma sodium (usually <115 mmol/L). When sodium levels in the blood become very low, water enters the brain cells and causes them to swell. This results in increased pressure in the skull and causes "hyponatremic encephalopathy". As pressure increases in the skull, herniation of the brain can occur, which is a squeezing of the brain across the internal structures of the skull. This can lead to headache, nausea, vomiting, confusion, seizures, brain stem compression and respiratory arrest, and non-cardiogenic accumulation of fluid in the lungs. This is usually fatal if not immediately treated.
Symptom severity depends on how fast and how severe the drop in blood salt level. A gradual drop, even to very low levels, may be tolerated well if it occurs over several days or weeks, because of neuronal adaptation. The presence of underlying neurological disease such as a seizure disorder or non-neurological metabolic abnormalities, also affects the severity of neurologic symptoms.
Chronic hyponatremia can lead to such complications as neurological impairments. These neurological impairments most often affect gait (walking) and attention, and can lead to increased reaction time and falls. Hyponatremia, by interfering with bone metabolism, has been linked with a doubled risk of osteoporosis and an increased risk of bone fracture.
In those with normal volume or euvolemia:
- Excessive excretion of water from the kidneys caused by diabetes insipidus, which involves either inadequate production of the hormone vasopressin, from the pituitary gland or impaired responsiveness of the kidneys to vasopressin.
The specific causes of hyponatremia are generally divided into those with low tonicity (lower than normal concentration of solutes), without low tonicity, and falsely low sodiums. Those with low tonicity are then grouped by whether the person has high fluid volume, normal fluid volume, or low fluid volume. Too little sodium in the diet alone is very rarely the cause of hyponatremia.
Most SCLS patients report having flu-like symptoms (like a runny nose), or else gastro-intestinal disorders (diarrhea or vomiting), or a general weakness or pain in their limbs, but others get no particular or consistent warning signs ahead of their episodes. They subsequently develop thirst and lightheadedness and the following conditions measurable in a hospital emergency-room setting:
- hemoconcentration (elevated hematocrit or hemoglobin readings, with hematocrit levels >49% in men and >43% in women, not because of an absolute increase in them but because of the leak of plasma);
- very low blood pressure (profound arterial hypotension, with systolic blood pressure levels <90 mm Hg);
- albumin deficiency (hypoalbuminemia measuring <3.0 g/dL);
- partial or generalized edema, and cold extremities;
- a paraprotein in the blood (an MGUS in approximately 80% of cases).
SCLS is often difficult to recognize and diagnose on initial presentation, and thus misdiagnoses are frequent. The characteristic triad of profound arterial hypotension, hemoconcentration (elevated hematocrit, leukocytosis, and thrombocytosis), and hypoalbuminemia in the absence of secondary causes of shock and infection, requires diagnosis in a monitored, hospital setting during or after an acute episode. The fact that the condition is exceedingly rare – an estimated one per million inhabitants – and that several other diseases exhibit features akin to SCLS, including secondary capillary-leak syndrome or hypoproteinemia, militate against early identification. Preserved consciousness, despite severe shock and hypotension, is an additional and most intriguing clinical manifestation often reported during episodes at hospital admission.
Possible underlying causes, which may be treatable and reversible in certain cases, include the Hs and Ts.
- Hypovolemia
- Hypoxia
- Hydrogen ions (acidosis)
- Hypothermia
- Hyperkalemia or Hypokalemia
- Hypoglycemia
- Tablets or Toxins (drug overdose)
- Electric shock
- Tachycardia
- Cardiac Tamponade
- Tension pneumothorax
- Thrombosis (myocardial infarction or pulmonary embolism)
- Trauma (hypovolemia from blood loss)
While the heart is asystolic, there is no blood flow to the brain unless CPR or internal cardiac massage (when the chest is opened and the heart is manually compressed) is performed, and even then it is a small amount. After many emergency treatments have been applied but the heart is still unresponsive, it is time to consider pronouncing the patient dead. Even in the rare case that a rhythm reappears, if asystole has persisted for fifteen minutes or more, the brain will have been deprived of oxygen long enough to cause brain death.
Asystole (1860, from Modern Latin, from Greek privative a "not, without" + "systolē" "contraction") is the absence of ventricular contractions lasting longer than the maximum time sustainable for life, which is about 2 seconds for human life. Asystole is the most serious form of cardiac arrest and is usually irreversible. A cardiac flatline is the state of total cessation of electrical activity from the heart, which means no tissue contraction from the heart muscle and therefore no blood flow to the rest of the body.
Asystole should not be confused with very brief pauses in the heart's electrical activity, even those that produce a temporary flat line, in electrical activity that can occur in certain less severe abnormal rhythms. Asystole is different from very fine occurrences of ventricular fibrillation, though both have a poor prognosis, and untreated fine VF will lead to asystole. Faulty wiring, disconnection of electrodes and leads, and power disruptions should be ruled out.
Asystolic patients (as opposed to those with a "shockable rhythm" such as ventricular fibrillation or ventricular tachycardia, which can be potentially treated with defibrillation) usually present with a very poor prognosis: asystole is found initially in only about 28% of cardiac arrest cases, but only 15% of these patients ever leave the hospital alive, even with the benefit of an intensive care unit, with the rate being lower (only 6%) for those already prescribed drugs for high blood pressure.
Asystole is treated by cardiopulmonary resuscitation (CPR) combined with an intravenous vasopressor such as epinephrine (a.k.a. adrenaline). Sometimes an underlying reversible cause can be detected and treated (the so-called 'Hs and Ts', an example of which is hypokalaemia). Several interventions previously recommended—such as defibrillation (known to be ineffective on asystole, but previously performed in case the rhythm was actually very fine ventricular fibrillation) and intravenous atropine—are no longer part of the routine protocols recommended by most major international bodies. Asystole may be treated with 1 mg epinephrine by IV every 3–5 minutes as needed. Vasopressin 40 units by IV every 3–5 minutes may be used in place of the first and/or second doses of epinephrine, but doing so does not enhance outcomes.
Survival rates in a cardiac arrest patient with asystole are much lower than a patient with a rhythm amenable to defibrillation; asystole is itself not a "shockable" rhythm. Out-of-hospital survival rates (even with emergency intervention) are less than 2 percent.
The upper threshold of a normal human resting heart rate is based on age. Cutoff values for tachycardia in different age groups are fairly well standardized; typical cutoffs are listed below:
- 1–2 days: Tachycardia > 159 beats per minute (bpm)
- 3–6 days: Tachycardia >166 bpm
- 1–3 weeks: Tachycardia >182 bpm
- 1–2 months: Tachycardia >179 bpm
- 3–5 months: Tachycardia >186 bpm
- 6–11 months: Tachycardia >169 bpm
- 1–2 years: Tachycardia >151 bpm
- 3–4 years: Tachycardia >137 bpm
- 5–7 years: Tachycardia >133 bpm
- 8–11 years: Tachycardia >130 bpm
- 12–15 years: Tachycardia >119 bpm
- >15 years – adult: Tachycardia >100 bpm
Heart rate is considered in the context of the prevailing clinical picture. For example: in sepsis >90 bpm is considered tachycardia.
When the heart beats excessively or rapidly, the heart pumps less efficiently and provides less blood flow to the rest of the body, including the heart itself. The increased heart rate also leads to increased work and oxygen demand by the heart, which can lead to rate related ischemia.
Relative tachycardia involves a greater increase in rate than would be expected in a given illness state.
Tachycardia is often asymptomatic. If the heart rate is too high, cardiac output may fall due to the markedly reduced ventricular filling time. Rapid rates, though they may be compensating for ischemia elsewhere, increase myocardial oxygen demand and reduce coronary blood flow, thus precipitating an ischemic heart or valvular disease. Sinus tachycardia accompanying a myocardial infarction may be indicative of cardiogenic shock.
Usually in women with no heart problems, this syndrome is characterized by normal resting heart rate but exaggerated postural sinus tachycardia with or without orthostatic hypotension.
Tachycardia, also called tachyarrhythmia, is a heart rate that exceeds the normal resting rate. In general, a resting heart rate over 100 beats per minute is accepted as tachycardia in adults. Heart rates above the resting rate may be normal (such as with exercise) or abnormal (such as with electrical problems within the heart).
These possible causes are remembered as the 6 Hs and the 6 Ts. See Hs and Ts
- Hypovolemia
- Hypoxia
- Hydrogen ions (Acidosis)
- Hyperkalemia or Hypokalemia
- Hypoglycemia
- Hypothermia
- Tablets or Toxins (Drug overdose)
- Cardiac Tamponade
- Tension pneumothorax
- Thrombosis (e.g., myocardial infarction, pulmonary embolism)
- Tachycardia
- Trauma (e.g., hypovolemia from blood loss)
This list is not fully comprehensive. Most notably, it does not include anaphylaxis. Pressure effects associated with artificial ventilation may also contribute to significant reduction in cardiac output, resulting in a clinical diagnosis of PEA.
The possible mechanisms by which the above conditions can cause pulseless in PEA or the same as those recognized as producing circulatory shock states. These are (1) impairment of cardiac filling, (2) impaired pumping effectiveness of the heart, (3) circulatory obstruction and (4) pathological vasodilation causing loss of vascular resistance and excess capacitance. More than one mechanism may be involved in any given case.
Pulseless electrical activity leads to a loss of cardiac output, and the blood supply to the brain is interrupted. As a result, PEA is usually noticed when a person loses consciousness and stops breathing spontaneously. This is confirmed by examining the airway for obstruction, observing the chest for respiratory movement, and feeling the pulse (usually at the carotid artery) for a period of 10 seconds.
The hallmark sign of POTS is a measured increase in heart rate by at least 30 beats per minute within 10 minutes of assuming an upright position. For people aged between 12 and 19, the minimum increase for diagnosis is 40 beats per minute. This symptom is known as orthostatic (upright) tachycardia (fast heart rate). It occurs without any coinciding drop in blood pressure, as that would indicate orthostatic hypotension. It should be noted, however, that certain medications to treat POTS may cause orthostatic hypotension. It is accompanied by other features of orthostatic intolerance—symptoms which develop in an upright position and are relieved by reclining. These orthostatic symptoms include palpitations, light-headedness, chest discomfort, shortness of breath, nausea, weakness or "heaviness" in the lower legs, blurred vision and cognitive difficulties. Symptoms may be exacerbated with prolonged sitting, prolonged standing, alcohol, heat, exercise, or eating a large meal.
In up to one third of people with POTS, fainting occurs in response to postural changes or exercise. Migraine-like headaches are common, sometimes with symptoms worsening in an upright position (orthostatic headache). Some people with POTS develop acrocyanosis, or blotchy, red/blue skin upon standing, especially over the feet (indicative of blood pooling). 48% of people with POTS report chronic fatigue and 32% report sleep disturbances. Others exhibit only the cardinal symptom of orthostatic tachycardia.
POTS can co-occur in all types of Ehlers–Danlos syndrome (EDS), a hereditary connective tissue disorder marked by loose hypermobile joints prone to subluxations and dislocations, skin that exhibits moderate or greater laxity, easy bruising, and many other symptoms. A trifecta of POTS, EDS, and Mast Cell Activation Syndrome (MCAS) is becoming increasingly more common, with a genetic marker common among all three conditions. POTS is also often accompanied by vasovagal syncope, with a 25% overlap being reported. There is significant overlap between POTS and chronic fatigue syndrome, with evidence of POTS in 25–50% of CFS cases. Fatigue and reduced exercise tolerance are prominent symptoms of both conditions, and dysautonomia may underlie both conditions.
PP is quantified using a blood pressure cuff and stethoscope (Korotkoff sounds), by measuring the variation of the systolic pressure during expiration and inspiration. Inflate cuff until no sounds (as is normally done when taking a BP) slowly decrease cuff pressure until systolic sounds are first heard during "expiration" but not during inspiration, (note this reading), slowly continue decreasing the cuff pressure until sounds are heard "throughout" the respiratory cycle, (inspiration and expiration)(note this second reading). If the pressure difference between the two readings is >10mmHg, it can be classified as pulsus paradoxus.
Cardiac:
- constrictive pericarditis. One study found that pulsus paradoxus occurs in less than 20% of patients with constrictive pericarditis.
- pericardial effusion, including cardiac tamponade
- cardiogenic shock
Pulmonary:
- pulmonary embolism
- tension pneumothorax
- asthma (especially with severe asthma exacerbations)
- chronic obstructive pulmonary disease
Non-pulmonary and non-cardiac:
- anaphylactic shock
- hypovolemia
- superior vena cava obstruction
- pregnancy
- obesity
PP has been shown to be predictive of the severity of cardiac tamponade. Pulsus paradoxus may not be seen with cardiac tamponade if an atrial septal defect or significant aortic regurgitation is also present.