Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The symptoms of Leydig cell hypoplasia include pseudohermaphroditism (i.e., feminized, ambiguous, or relatively mildly underdeveloped (e.g., micropenis, severe hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), a female gender identity or gender variance, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Examples of symptoms of hypogonadism with underdevelopment of the Gonads (testicles and ovaries) include delayed, reduced, or absent puberty, low libido, and infertility.
Women with hypogonadism do not begin menstruating and it may affect their height and breast development. Onset in women after puberty causes cessation of menstruation, lowered libido, loss of body hair and hot flashes. In boys it causes impaired muscle and beard development and reduced height. In men it can cause reduced body hair and beard, enlarged breasts, loss of muscle, and sexual difficulties. A brain tumor (central hypogonadism) may involve headaches, impaired vision, milky discharge from the breast and symptoms caused by other hormone problems.
The exact genetic nature of each particular case of KS / HH will determine which, if any, of the non-reproductive features will occur. The severity of the symptoms will also vary from case to case. Even family members will not show the same range or severity of symptoms.
KS / HH is most often present from birth but adult onset versions are found in both males and females. The hypothalamic-pituitary-gonadal axis (HPG axis) functions normally at birth and well into adult life giving normal puberty and normal reproductive function. The HPG axis then either fails totally or is reduced to a very low level of GnRH release, in adult life with no obvious cause such as a pituitary tumour. This will lead to a fall in testosterone or oestrogen levels and infertility.
Functional hypothalamic amenorrhoea is seen in females where the HPG axis is suppressed in response to physical or psychological stress or malnutrition. It is reversible with the removal of the stressor.
Some cases of KS / HH appear to reverse during adult life where the HPG axis resumes its normal function and GnRH, LH, and FSH levels return to normal levels. This occurs in an estimated 10 to 20% of cases, primarily normosmic CHH cases rather than KS cases and only found in patients who have undergone some form of testosterone replacement therapy.
It is only normally discovered when testicular volume increases while on testosterone treatment alone and testosterone levels return to normal when treatment is stopped. This type of KS / HH rarely occurs in cases where males have had a history of un-descended testes.
Affected individuals with KS and other forms of HH are almost invariably born with normal sexual differentiation; i.e., they are physically male or female. This is due to the human chorionic gonadotrophin (hCG) produced by placenta at approximately 12 to 20 weeks gestation (pregnancy) which is normally unaffected by having KS or CHH.
People with KS / HH lack the surge of GnRH, LH, and FSH that normally occurs between birth and six months of age. This surge is particularly important in infant boys as it helps with testicular descent into the scrotum. The surge of GnRH/LH/FSH in non KS/HH children gives detectable levels of testosterone in boys and oestrogen & progesterone in girls. The lack of this surge can sometimes be used as a diagnostic tool if KS / HH is suspected in a newborn boy, but is not normally distinct enough for diagnosis in girls.
It is normally difficult to distinguish a case of KS / HH from a straightforward constitutional delay of puberty. However, if puberty has not started by either age 14 (girls) or 15 (boys) and one or more of the non-reproductie features mentioned belowe is present then a referral to reproductive endocrinologist might be advisable.
The features of Kallmann syndrome (KS) and other forms of hypogonadotropic hypogonadism (HH) can be split into two different categories; "reproductive" and "non reproductive".
The symptoms of hypogonadotrophic hypogonadism, a subtype of hypogonadism, include late, incomplete or lack of development at puberty, and sometimes short stature or the inability to smell; in females, a lack of breasts and menstrual periods, and in males a lack of sexual development, e.g., facial hair, penis and testes enlargement, deepening voice.
Follicle-stimulating hormone (FSH) insensitivity, or ovarian insensitivity to FSH in females, also referable to as ovarian follicle hypoplasia or granulosa cell hypoplasia in females, is a rare autosomal recessive genetic and endocrine syndrome affecting both females and males, with the former presenting with much greater severity of symptomatology. It is characterized by a resistance or complete insensitivity to the effects of follicle-stimulating hormone (FSH), a gonadotropin which is normally responsible for the stimulation of estrogen production by the ovaries in females and maintenance of fertility in both sexes. The condition manifests itself as hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), amenorrhea (lack of menstruation), and infertility in females, whereas males present merely with varying degrees of infertility and associated symptoms (e.g., decreased sperm production).
A related condition is luteinizing hormone (LH) insensitivity (termed Leydig cell hypoplasia when it occurs in males), which presents with similar symptoms to those of FSH insensitivity but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in males and merely problems with fertility in females); however, males also present with feminized or ambiguous genitalia (also known as pseudohermaphroditism), whereas ambiguous genitalia does not occur in females with FSH insensitivity. Despite their similar causes, LH insensitivity is considerably more common in comparison to FSH insensitivity.
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
FSH insensitivity presents itself in females as two clusters of symptoms: 1) hypergonadotropic hypogonadism or hypoestrogenism, resulting in a delayed, reduced, or fully absent puberty and associated sexual infantilism (if left untreated), reduced uterine volume, and osteoporosis; and 2) ovarian dysgenesis or failure, resulting in primary or secondary amenorrhea, infertility, and normal sized to slightly enlarged ovaries. Males on the other hand are significantly less affected, presenting merely with partial or complete infertility, reduced testicular volume, and oligozoospermia (reduced spermatogenesis).
In this situation the testes are abnormal, atrophic, or absent, and sperm production severely disturbed to absent. FSH levels tend to be elevated (hypergonadotropic) as the feedback loop is interrupted (lack of feedback inhibition on FSH). The condition is seen in 49–93% of men with azoospermia. Testicular failure includes absence of failure production as well as low production and maturation arrest during the process of spermatogenesis.
Causes for testicular failure include congenital issues such as in certain genetic conditions (e.g. Klinefelter syndrome), some cases of cryptorchidism or Sertoli cell-only syndrome as well as acquired conditions by infection (orchitis), surgery (trauma, cancer), radiation, or other causes. Mast cells releasing inflammatory mediators appear to directly suppress sperm motility in a potentially reversible manner, and may be a common pathophysiological mechanism for many causes leading to inflammation. Testicular azoospermia is a kind of non-obstructive azoospermia.
Generally, men with unexplained hypergonadotropic azoospermia need to undergo a chromosomal evaluation.
Examples of symptoms of hypogonadism include delayed, reduced, or absent puberty, low libido, and infertility.
Hypogonadotropic hypogonadism (HH), also known as secondary or central hypogonadism, as well as gonadotropin-releasing hormone deficiency or gonadotropin deficiency (GD), is a condition which is characterized by hypogonadism due to an impaired secretion of gonadotropins, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH), by the pituitary gland in the brain, and in turn decreased gonadotropin levels and a resultant lack of sex steroid production.
Pretesticular azoospermia is characterized by inadequate stimulation of otherwise normal testicles and genital tract. Typically, follicle-stimulating hormone (FSH) levels are low (hypogonadotropic) commensurate with inadequate stimulation of the testes to produce sperm. Examples include hypopituitarism (for various causes), hyperprolactinemia, and exogenous FSH suppression by testosterone. Chemotherapy may suppress spermatogenesis. Pretesticular azoospermia is seen in about 2% of azoospermia. Pretesticular azoospermia is a kind of non-obstructive azoospermia.
Leydig cell hypoplasia (or aplasia) (LCH), also known as Leydig cell agenesis, is a rare autosomal recessive genetic and endocrine syndrome affecting an estimated 1 in 1,000,000 genetic males. It is characterized by an inability of the body to respond to luteinizing hormone (LH), a gonadotropin which is normally responsible for signaling Leydig cells of the testicles to produce testosterone and other androgen sex hormones. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia), hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), and infertility.
Leydig cell hypoplasia does not occur in biological females as they do not have either Leydig cells or testicles. However, the cause of the condition in males, luteinizing hormone insensitivity, does affect females, and because LH plays a role in the female reproductive system, it can result in primary amenorrhea or oligomenorrhea (absent or reduced menstruation), infertility due to anovulation, and ovarian cysts.
A related condition is follicle-stimulating hormone (FSH) insensitivity, which presents with similar symptoms to those of Leydig cell hypoplasia but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in females and merely problems with fertility in males). Despite their similar causes, FSH insensitivity is considerably less common in comparison to LH insensitivity.
Congenital hypogonadotropic hypogonadism presents as hypogonadism, e.g., reduced or absent puberty, low libido, infertility, etc. due to an impaired release of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and a resultant lack of sex steroid and peptides production by the gonads.
In Kallmann syndrome, a variable non-reproductive phenotype occurs with anosmia (loss of the sense of smell) including sensorineural deafness, coloboma, bimanual synkinesis, craniofacial abnormalities, and/or renal agenesis.
There are a multitude of different etiologies of HH. Congenital causes include the following:
- Chromosomal abnormalities (resulting in gonadal dysgenesis) - Turner's syndrome, Klinefelter's syndrome, Swyer's syndrome, XX gonadal dysgenesis, and mosaicism.
- Defects in the enzymes involved in the gonadal biosynthesis of the sex hormones - 17α-hydroxylase deficiency, 17,20-lyase deficiency, 17β-hydroxysteroid dehydrogenase III deficiency, and lipoid congenital adrenal hyperplasia.
- Gonadotropin resistance (e.g., due to inactivating mutations in the gonadotropin receptors) - Leydig cell hypoplasia (or insensitivity to LH) in males, FSH insensitivity in females, and LH and FSH resistance due to mutations in the "GNAS" gene (termed pseudohypoparathyroidism type 1A).
Acquired causes (due to damage to or dysfunction of the gonads) include ovarian torsion, vanishing/anorchia, orchitis, premature ovarian failure, ovarian resistance syndrome, trauma, surgery, autoimmunity, chemotherapy, radiation, infections (e.g., sexually-transmitted diseases), toxins (e.g., endocrine disruptors), and drugs (e.g., antiandrogens, opioids, alcohol).
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
Symptoms of the condition in males consist of loss of libido, impotence, infertility, shrinkage of the testicles, penis, and prostate, diminished masculinization (e.g., decreased facial and body hair growth), low muscle mass, anxiety, depression, fatigue, vasomotor symptoms (hot flashes), insomnia, headaches, and osteoporosis. In addition, symptoms of hyperestrogenism, such as gynecomastia and feminization, may be concurrently present in males.
In females, hypoandrogenism consist of loss of libido, decreased body hair growth, depression, fatigue, vaginal vasocongestion (which can result in cramps), vasomotor symptoms (e.g., hot flashes and palpitations), insomnia, headaches, osteoporosis and reduced muscle mass. Symptoms of hypoestrogenism may be present in both sexes in cases of severe androgen deficiency (as estrogens are synthesized from androgens).
The fertile eunuch syndrome is a cause of hypogonadotropic hypogonadism caused by a luteinizing hormone deficiency. It is characterized by hypogonadism with spermatogenesis. Pasqualini and Bur published the first case of eunuchoidism with preserved spermatogenesis in 1950 in la Revista de la Asociación Médica Argentina.
The hypoandrogenism with spermatogenesis syndrome included: (a) eunuchoidism, (b) testis with normal spermatogenesis and full volume, with mature spermatozoids in a high proportion of seminiferous tubes and undifferentiated and immature Leydig cells (c) full functional compensation through the administration of chorionic gonadotropin hormone, while hCG is administered (d) total urinary gonadotrophins within normal limits (e) this definition implies the normal activity of the pituitary and the absence of congenital malformations in general. In describing five other similar cases in 1953, Mc Cullagh & al coined the term fertile eunuch introducing it in the English literature. Unfortunately, this term is incorrect and should not be employed. Indeed, these patients are not really eunuchs. Moreover, as it will be explained later, they are not usually fertile if not treated.
A first step in the understanding of the physiopathology of Pasqualini syndrome was the absence of Lutheinizing Hormone (LH) in plasma and urine of patients. The second breakthrough was the functional and genetic studies that validated the hypothesis of a functional deficit of LH in these men. Inactivating LH mutations will then also be described in some women. Different groups demonstrated in these cases a LH with varying degrees of immunological activity but biologically inactive in most of the patients, due to one or more inactivating mutations in the LHB gene. Finally, the full comprehension of Pasqualini syndrome allowed to reverse the hypoandrogenic phenotype and to restore fertility in these patients through the use of chorionic gonadotropin and the modern in-vitro fertility techniques
Hypoandrogenism is caused primarily by either dysfunction, failure, or absence of the gonads ("hypergonadotropic") or impairment of the hypothalamus or pituitary gland ("hypogonadotropic"), which in turn can be caused by a multitude of different stimuli, including genetic conditions (e.g., GnRH/gonadotropin insensitivity and enzymatic defects of steroidogenesis), tumors, trauma, surgery, autoimmunity, radiation, infections, toxins, drugs, and many others. Alternatively, it may be the result of conditions such as androgen insensitivity syndrome or hyperestrogenism. More simply, old age may also be a factor in the development of hypoandrogenism, as androgen levels decline with age.
Swyer syndrome, or XY gonadal dysgenesis, is a type of hypogonadism in a person whose karyotype is 46,XY. The person is externally female with streak gonads, and if left untreated, will not experience puberty. Such gonads are typically surgically removed (as they have a significant risk of developing tumors) and a typical medical treatment would include hormone replacement therapy.
The syndrome was named by Gerald Swyer, an endocrinologist, based in London, United Kingdom.
Swyer syndrome represents one phenotypic result of a failure of the gonads to develop properly, and hence is part of a class of conditions termed gonadal dysgenesis. There are many forms of gonadal dysgenesis.
Swyer syndrome is an example of a condition in which an externally unambiguous female body carries dysgenetic, atypical, or abnormal gonads. Other examples include complete androgen insensitivity syndrome, partial X chromosome deletions, lipoid congenital adrenal hyperplasia, and Turner syndrome.
Children who are healthy but have a slower rate of physical development than average have constitutional delay of growth and puberty. These children have a history of stature shorter than their age-matched peers throughout childhood, but their height is appropriate for bone age, and skeletal development is delayed more than 2.5 SD. They usually are thin and often have a family history of delayed puberty. Children with a combination of a family tendency toward short stature and constitutional delay of growth and puberty are the most likely to seek evaluation. They quite often seek evaluation when classmates or friends undergo pubertal development and growth, thereby accentuating their delay.
It is often difficult to establish if it is a true constitutional delay of growth and puberty or if there is an underlying pathology, because biochemical tests are not always discriminatory. Short stature, delayed growth in height and weight, and/or delayed puberty may be the only clinical manifestations of coeliac disease, in absence of any other symptoms.
The history should include prior testicular or penile insults (torsion, cryptorchidism, trauma), infections (mumps orchitis, epididymitis), environmental factors, excessive heat, radiation, medications, and drug use (anabolic steroids, alcohol, smoking).
Sexual habits, frequency and timing of intercourse, use of lubricants, and each partner's previous fertility experiences are important.
Loss of libido and headaches or visual disturbances may indicate a pituitary tumor.
The past medical or surgical history may reveal thyroid or liver disease (abnormalities of spermatogenesis), diabetic neuropathy (retrograde ejaculation), radical pelvic or retroperitoneal surgery (absent seminal emission secondary to sympathetic nerve injury), or hernia repair (damage to the vas deferens or testicular blood supply).
A family history may reveal genetic problems.
Isolated hypogonadotropic hypogonadism (IHH), also called idiopathic or congenital hypogonadotropic hypogonadism (CHH), as well as isolated or congenital gonadotropin-releasing hormone deficiency (IGD), is a condition which results in a small subset of cases of hypogonadotropic hypogonadism (HH) due to deficiency in or insensitivity to gonadotropin-releasing hormone (GnRH) where the function and anatomy of the anterior pituitary is otherwise normal and secondary causes of HH are not present.