Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Not all of the above manifestations occur in every case of hypoglycemia. There is no consistent order to the appearance of the symptoms. Specific manifestations vary by age and by the severity of the hypoglycemia. In older children and adults, moderately severe hypoglycemia can resemble mania, mental illness, drug intoxication, or drunkenness. In the elderly, hypoglycemia can produce focal stroke-like effects or a hard-to-define malaise. The symptoms of a single person do tend to be similar from episode to episode.
In the large majority of cases, hypoglycemia severe enough to cause seizures or unconsciousness can be reversed without obvious harm to the brain. Cases of death or permanent neurological damage occurring with a single episode have usually involved prolonged, untreated unconsciousness, interference with breathing, severe concurrent disease, or some other type of vulnerability. Nevertheless, brain damage or death has occasionally resulted from severe hypoglycemia.
Idiopathic postprandial syndrome, colloquially but incorrectly known by some as hypoglycemia, describes a collection of clinical signs and symptoms similar to medical hypoglycemia but without the demonstrably low blood glucose levels which characterise said condition.
People with this condition suffer from recurrent episodes of altered mood and cognitive efficiency, often accompanied by weakness and adrenergic symptoms such as shakiness. The episodes typically occur a few hours after a meal, rather than after many hours of fasting. The principal treatments recommended are extra small meals or snacks and avoidance of excessive simple sugars.
The symptoms include many of the symptoms associated with milder degrees of hypoglycemia, especially the adrenergic symptoms, but do not progress to objective impairment of brain function, seizures, coma, or brain damage.
- Shakiness
- Sense of weakness
- Altered or depressed mood
- Confusion
- Fatigue
- Anxiety
- Paleness
- Perspiration
- Increased pulse or respiratory rate
- Hunger
A rare metabolic disease of the blood-brain glucose transport system has been described in which severe neuroglycopenic effects occurred despite normal blood glucose levels. Low levels of glucose were discovered in the cerebrospinal fluid (CSF), a condition referred to as "hypoglycorrhachia" [or hypoglycorrhacia].
Hypoglycorrhachia is associated with Glucose transporter type 1 GLUT1 deficiency syndrome (GLUT1DS).
Perhaps a much more common example of the same phenomenon occurs in the people with poorly controlled type 1 diabetes who develop symptoms of hypoglycemia at levels of blood glucose which are normal for most people.
The most common clinical history in patients with glycogen-storage disease type 0 (GSD-0) is that of an infant or child with symptomatic hypoglycemia or seizures that occur before breakfast or after an inadvertent fast. In affected infants, this event typically begins after they outgrow their nighttime feeds. In children, this event may occur during acute GI illness or periods of poor enteral intake.
Mild hypoglycemic episodes may be clinically unrecognized, or they may cause symptoms such as drowsiness, sweating, lack of attention, or pallor. Uncoordinated eye movements, disorientation, seizures, and coma may accompany severe episodes.
Glycogen-storage disease type 0 affects only the liver. Growth delay may be evident with height and weight percentiles below average. Abdominal examination findings may be normal or reveal only mild hepatomegaly.Signs of acute hypoglycemia may be present, including the following:
Symptoms vary according to individuals' hydration level and sensitivity to the rate and/or magnitude of decline of their blood glucose concentration.
A crash is usually felt within four hours or less of heavy carbohydrate consumption. Symptoms of reactive hypoglycemia include:
- double vision or blurry vision
- unclear thinking
- insomnia
- heart palpitation or fibrillation
- fatigue
- dizziness
- light-headedness
- sweating
- headaches
- depression
- nervousness
- muscle twitches
- irritability
- tremors
- flushing
- craving sweets
- increased appetite
- rhinitis
- nausea, vomiting
- panic attack
- numbness/coldness in the extremities
- confusion
- irrationality
- bad temper
- paleness
- cold hands
- disorientation
- the need to sleep or 'crash'
- coma can be a result in severe untreated episodes
The majority of these symptoms, often correlated with feelings of hunger, mimic the effect of inadequate sugar intake as the biology of a crash is similar in itself to the body’s response to low blood sugar levels following periods of glucose deficiency.
Signs and symptoms can include:
- hypoglycemia
- lethergy
- hepatomegaly
- muscle pain
- cardiomyopathy
Typically, initial signs and symptoms of this disorder occur during infancy or early childhood and can include feeding difficulties, lethargy, hypoglycemia, hypotonia, liver problems, and abnormalities in the retina. Muscle pain, a breakdown of muscle tissue, and abnormalities in the nervous system that affect arms and legs (peripheral neuropathy) may occur later in childhood. There is also a risk for complications such as life-threatening heart and breathing problems, coma, and sudden unexpected death. Episodes of LCHAD deficiency can be triggered by periods of fasting or by illnesses such as viral infections.
Ketotic hypoglycemia more commonly refers to a common but mysterious "disease" of recurrent hypoglycemic symptoms with ketosis in young children. The cause and the homogeneity of the condition remain uncertain, but a characteristic presentation, precipitating factors, diagnostic test results, treatment, and natural history can be described. It remains one of the more common causes of hypoglycemia in the age range.
Typically, initial signs and symptoms of this disorder occur during infancy and include low blood sugar (hypoglycemia), lack of energy (lethargy), and muscle weakness. There is also a high risk of complications such as liver abnormalities and life-threatening heart problems. Symptoms that begin later in childhood, adolescence, or adulthood tend to be milder and usually do not involve heart problems. Episodes of very long-chain acyl-coenzyme A dehydrogenase deficiency can be triggered by periods of fasting, illness, and exercise.
It is common for babies and children with the early and childhood types of VLCADD to have episodes of illness called metabolic crises. Some of the first symptoms of a metabolic crisis are: extreme sleepiness, behavior changes, irritable mood, poor appetite.
Some of these other symptoms of VLCADD in infants may also follow: fever, nausea, diarrhea, vomiting, hypoglycemia.
Hypoglycemia in early infancy can cause jitteriness, lethargy, unresponsiveness, or seizures. The most severe forms may cause macrosomia in utero, producing a large birth weight, often accompanied by abnormality of the pancreas. Milder hypoglycemia in infancy causes hunger every few hours, with increasing jitteriness or lethargy. Milder forms have occasionally been detected by investigation of family members of infants with severe forms, adults with the mildest degrees of congenital hyperinsulinism have a decreased tolerance for prolonged fasting. Other presentations are:
The variable ages of presentations and courses suggest that some forms of congenital hyperinsulinism, especially those involving abnormalities of K channel function, can worsen or improve with time the potential harm from hyperinsulinemic hypoglycemia depends on the severity, and duration. Children who have recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to the brain
Idiopathic hypoglycemia is, literally, a medical condition in which the glucose level in the blood (blood glucose) is abnormally low due to an undeterminable cause. This is considered an incomplete and unsatisfactory diagnosis by physicians and is rarely used by endocrinologists, as it implies an unfinished diagnostic evaluation. In general, the more severe the hypoglycemia and the more clearly it is proven, the less likely it is to remain "idiopathic".
"Idiopathic hypoglycemia" can also be a synonym for reactive hypoglycemia or for hypoglycemia that is not diagnosed by a physician and does not fulfill the Whipple triad criteria. A more precise term for that condition is idiopathic postprandial syndrome.
Reactive hypoglycemia, postprandial hypoglycemia, or sugar crash is a term describing recurrent episodes of symptomatic hypoglycemia occurring within 4 hours after a high carbohydrate meal in people who do not have diabetes.
The condition is related to homeostatic systems utilised by the body to control blood sugar levels. It is variously described as a sense of tiredness, lethargy, irritation, or hangover, although the effects can be less if one has undertaken a lot of physical activity within the next few hours after consumption.
The alleged mechanism for the feeling of a crash is correlated with an abnormally rapid rise in blood glucose after eating. This normally leads to insulin secretion (known as an "insulin spike"), which in turn initiates rapid glucose uptake by tissues either accumulating it as glycogen or utilizing it for energy production. The consequent fall in blood glucose is indicated as the reason for the "sugar crash".. A deeper cause might be hysteresis effect of insulin action, i.e., the effect of insulin is still prominent even if both plasma glucose and insulin levels were already low, causing a plasma glucose level eventually much lower than the baseline level.
Sugar crashes are not to be confused with the after-effects of consuming large amounts of "protein", which produces fatigue akin to a sugar crash, but are instead the result of the body prioritising the digestion of ingested food.
The prevalence of this condition is difficult to ascertain because a number of stricter or looser definitions have been used. It is recommended that the term reactive hypoglycemia be reserved for the pattern of postprandial hypoglycemia which meets the Whipple criteria (symptoms correspond to measurably low glucose and are relieved by raising the glucose), and that the term idiopathic postprandial syndrome be used for similar patterns of symptoms where abnormally low glucose levels at the time of symptoms cannot be documented.
To assist diagnosis, a doctor can order an HbA1c test, which measures the blood sugar average over the two or three months before the test. The more specific 6-hour glucose tolerance test can be used to chart changes in the patient's blood sugar levels before ingestion of a special glucose drink and at regular intervals during the six hours following to see if an unusual rise or drop in blood glucose levels occurs.
According to the U.S. National Institute of Health (NIH), a blood glucose level below 70 mg/dL (3.9 mmol/L) at the time of symptoms followed by relief after eating confirms a diagnosis for reactive hypoglycemia.
The typical patient with ketotic hypoglycemia is a young child between the ages of 10 months and 4 years. Episodes nearly always occur in the morning after an overnight fast, often one that is longer than usual. Symptoms include those of neuroglycopenia, ketosis, or both. The neuroglycopenic symptoms usually include lethargy and malaise, but may include unresponsiveness or seizures. The principal symptoms of ketosis are anorexia, abdominal discomfort, and nausea, sometimes progressing to vomiting.
If severe, parents usually take the child to a local emergency department, where blood is drawn. The glucose is usually found to be between 35 and 60 mg/dl (1.8-3.1 mMol/L). The total CO is usually somewhat low as well, (14-19 mMol/L is typical), and if urine is obtained, high levels of ketones are discovered. Ketones can also be measured in the blood at the bedside (Medisense glucometer). Other routine tests are normal. If given intravenous fluids with saline and dextrose, the child improves dramatically and is usually restored to normal health within a few hours. These symptoms are normally seen because of the child being unadapted to using fat as energy, typically when the child's daily glucose intake might be too high (more than 50g/day for a child). This is also associated with fluctuant glycemia throughout the day.
A first episode is usually attributed to a viral infection or acute gastroenteritis. However, in most of these children one or more additional episodes recur over next few years and become immediately recognizable to the parents. In mild cases, carbohydrates and a few hours of sleep will be enough to end the symptoms. Thus said, the required amount of carbohydrate intake of a child, as well as for an adult is close to 0, because the liver can supply the required glucose quantity needed for the body through gluconeogenesis.
Precipitating factors, conditions that trigger an episode, may include extended fasting (e.g., missing supper the night before), a low carbohydrate intake the previous day (e.g., a hot dog without a bun), or stress such as a viral infection. Most children affected by ketotic hypoglycemia have a slender build, many with a weight percentile below height percentile, though without other evidence of malnutrition. Overweight children are rarely affected.
Patients generally have a benign course, and typically present with hepatomegaly and growth retardation early in childhood. Mild hypoglycemia, hyperlipidemia, and hyperketosis may occur. Lactic acid and uric acid levels may be normal. However, lactic acidosis may occur during fasting.
The differential diagnosis of congenital hyperinsulinism is consistent with PMM2-CDG, as well as several syndromes. Among other DDx we find the following that are listed:
- MPI-CDG
- Beckwith-Wiedemann syndrome
- Sotos syndrome
- Usher 1 syndromes
The signs of carnitine-acylcarnitine translocase deficiency usually begin within the first few hours of life. Seizures, an irregular heartbeat, and breathing problems are often the first signs of this disorder. This disorder may also cause extremely low levels of ketones (products of fat breakdown that are used for energy) and low blood sugar (hypoglycemia). Together, these two signs are called hypoketotic hypoglycemia. Other signs that are often present include ammonia in the blood (hyperammonemia), an enlarged liver (hepatomegaly), heart abnormalities (cardiomyopathy), and muscle weakness. This disorder can cause sudden infant death.
Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency, often shortened to LCHAD deficiency, is a rare autosomal recessive fatty acid oxidation disorder that prevents the body from converting certain fats into energy. This can become life-threatening, particularly during periods of fasting.
Dopamine beta (β)-hydroxylase deficiency is a condition that affects the autonomic nervous system (ANS). The ANS works via two opposing branches, the sympathetic and parasympathetic, both of which antagonistically control involuntary processes that regulate bodily homeostasis. Problems related to DβH deficiency often first appear as complications shortly after birth. Postnatal episodes may include vomiting, dehydration, hypotension, muscle hypotonia, hypothermia, and hypoglycemia.
Due to the deficiency of norepinephrine and epinephrine those affected by dopamine β-hydroxylase deficiency may present with droopy eyelids (ptosis), nasal congestion, and hypotension. The most common complaint of individuals with dopamine β-hydroxylase deficiency is orthostatic hypotension. The symptoms associated with orthostatic hypotension are dizziness, blurred vision, or fainting upon standing. Therefore, DβH deficiency patients may have an inability to stand for a prolonged period of time. This phenomenon is especially pronounced when going from supine to upright positions, such as getting out of bed in the morning. It is also worsened by extreme climates due to loss of fluid through excessive sweating. The inability to maintain normal blood pressure makes it difficult for people with DβH deficiency to exercise (exercise intolerance). Males with DβH deficiency may experience retrograde ejaculation, a discharge of semen backward into the bladder due to dysmotility of their smooth muscle, which as innervated by the ANS. A subset of DβH deficiency patients present with hypermobility. Postural orthostatic tachycardia syndrome, another form of dysautonomia, also sees this comorbidity with hypermobility in the form of a rare connective tissue disorder called Ehlers Danlos syndrome.
Another commonly experienced symptom is hypoglycemia, which is thought to be caused by adrenomedullary failure. In looking at the cardiovascular system, a loss of noradrenergic control is seen as T-wave abnormalities on electrocardiogram. Prolactin is frequently suppressed by excessive dopamine found in the patient's central nervous system. Excess dopamine can also affect digestion, producing vomiting and inhibiting motor signaling to the GI tract.
Glycogen storage disease type 0 is a disease characterized by a deficiency in the glycogen synthase enzyme (GYS). Although glycogen synthase deficiency does not result in storage of extra glycogen in the liver, it is often classified as a glycogen storage disease because it is another defect of glycogen storage and can cause similar problems. There are two isoforms (types) of glycogen synthase enzyme; GYS1 in muscle and GSY2 in liver, each with a corresponding form of the disease. Mutations in the liver isoform (GYS2), causes fasting hypoglycemia, high blood ketones, increased free fatty acids and low levels of alanine and lactate. Conversely, feeding in these patients results in hyperglycemia and hyperlactatemia.
About 50% of all cancer patients suffer from cachexia. Those with upper gastrointestinal and pancreatic cancers have the highest frequency of developing a cachexic symptom. This figure rises to 80% in terminal cancer patients. In addition to increasing morbidity and mortality, aggravating the side effects of chemotherapy, and reducing quality of life, cachexia is considered the immediate cause of death of a large proportion of cancer patients, ranging from 22% to 40% of the patients.
Symptoms of cancer cachexia include progressive weight loss and depletion of host reserves of adipose tissue and skeletal muscle. Cachexia should be suspected if involuntary weight loss of greater than 5% of premorbid weight occurs within a six-month period. Traditional treatment approaches, such as appetite stimulants, 5-HT antagonists, nutrient supplementation, and COX-2 inhibitor, have failed to demonstrate success in reversing the metabolic abnormalities seen in cancer cachexia.
Hypoglycemia is the central clinical problem, the one that is most damaging, and the one that most often prompts the initial diagnosis.
Maternal glucose transferred across the placenta prevents hypoglycemia in a fetus with GSD I, but the liver is enlarged with glycogen at birth. The inability to generate and release glucose soon results in hypoglycemia, and occasionally in lactic acidosis fulminant enough to appear as a primary respiratory problem in the newborn period. Neurological manifestations are less severe than if the hypoglycemia were more acute. The brain's habituation to mild hypoglycemia is at least partly explained by use of alternative fuels, primarily lactate.
More commonly, infants with GSD I tolerate without obvious symptoms a chronic, mild hypoglycemia, and compensated lactic acidosis between feedings. Blood glucose levels are typically 25 to 50 mg/dl (1.4–2.8 mM). These infants continue to need oral carbohydrates every few hours. Many never sleep through the night even in the second year of life. They may be pale, clammy, and irritable a few hours after a meal. Developmental delay is not an intrinsic or inevitable effect of glucose-6-phosphatase deficiency but is common if the diagnosis is not made in early infancy.
Although mild hypoglycemia for much of the day may go unsuspected, the metabolic adaptations described above make severe hypoglycemic episodes, with unconsciousness or seizure, uncommon before treatment. Episodes which occur are likely to happen in the morning before breakfast. GSD I is therefore a potential cause of ketotic hypoglycemia in young children.
Once the diagnosis has been made, the principal goal of treatment is to maintain an adequate glucose level and prevent hypoglycemia.
Cachexia is often seen in end-stage cancer, and in that context is called "cancer cachexia". Patients with congestive heart failure can have a cachectic syndrome. Also, a cachexia comorbidity is seen in patients who have any of the range of illnesses classified as chronic obstructive pulmonary disease. Cachexia is also associated with advanced stages of chronic kidney disease, cystic fibrosis, multiple sclerosis, motor neuron disease, Parkinson's disease, dementia, HIV/AIDS and other progressive illnesses.
Intestinal involvement can cause mild malabsorption with steatorrhea, greasy stools, but usually requires no treatment.
This disorder usually appears within the first year of life. The signs and symptoms of HMG-CoA lyase deficiency include vomiting, dehydration, lethargy, convulsions, and coma. When episodes occur in an infant or child, blood sugar becomes extremely low (hypoglycemia), and harmful compounds can build up and cause the blood to become too acidic (metabolic acidosis). These episodes are often triggered by an infection, fasting, strenuous exercise, or sometimes other types of stress.