Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Congestive heart failure is the most common result of fluid overload. Also, it may be associated with hyponatremia (hypervolemic hyponatremia).
The excess fluid, primarily salt and water, builds up in various locations in the body and leads to an increase in weight, swelling in the legs and arms (peripheral edema), and/or fluid in the abdomen (ascites). Eventually, the fluid enters the air spaces in the lungs (pulmonary edema) reduces the amount of oxygen that can enter the blood, and causes shortness of breath (dyspnea) or enters pleural space by transudation (pleural effusion which also causes dyspnea), which is the best indicator of estimating central venous pressure is increased. It can also cause swelling of the face. Fluid can also collect in the lungs when lying down at night, possibly making nighttime breathing and sleeping difficult (paroxysmal nocturnal dyspnea).
In those with low volume or hypovolemia:
- Inadequate intake of free water associated with total body sodium depletion. Typically in elderly or otherwise disabled patients who are unable to take in water as their thirst dictates and also are sodium depleted. This is the most common cause of hypernatremia.
- Excessive losses of water from the urinary tract – which may be caused by glycosuria, or other osmotic diuretics – leads to a combination of sodium and free water losses.
- Water losses associated with extreme sweating.
- Severe watery diarrhea
Signs and symptoms of hyponatremia include nausea and vomiting, headache, short-term memory loss, confusion, lethargy, fatigue, loss of appetite, irritability, muscle weakness, spasms or cramps, seizures, and decreased consciousness or coma. The presence and severity of signs and symptoms are related to the level of salt in the blood, with lower levels of plasma sodium associated with more severe symptoms. However, emerging data suggest that mild hyponatremia (plasma sodium levels at 131–135 mmol/L) is associated with numerous complications or subtle, presently unrecognized symptoms (for example, increased falls, altered posture and gait, reduced attention).
Neurological symptoms typically occur with very low levels of plasma sodium (usually <115 mmol/L). When sodium levels in the blood become very low, water enters the brain cells and causes them to swell. This results in increased pressure in the skull and causes "hyponatremic encephalopathy". As pressure increases in the skull, herniation of the brain can occur, which is a squeezing of the brain across the internal structures of the skull. This can lead to headache, nausea, vomiting, confusion, seizures, brain stem compression and respiratory arrest, and non-cardiogenic accumulation of fluid in the lungs. This is usually fatal if not immediately treated.
Symptom severity depends on how fast and how severe the drop in blood salt level. A gradual drop, even to very low levels, may be tolerated well if it occurs over several days or weeks, because of neuronal adaptation. The presence of underlying neurological disease such as a seizure disorder or non-neurological metabolic abnormalities, also affects the severity of neurologic symptoms.
Chronic hyponatremia can lead to such complications as neurological impairments. These neurological impairments most often affect gait (walking) and attention, and can lead to increased reaction time and falls. Hyponatremia, by interfering with bone metabolism, has been linked with a doubled risk of osteoporosis and an increased risk of bone fracture.
The specific causes of hyponatremia are generally divided into those with low tonicity (lower than normal concentration of solutes), without low tonicity, and falsely low sodiums. Those with low tonicity are then grouped by whether the person has high fluid volume, normal fluid volume, or low fluid volume. Too little sodium in the diet alone is very rarely the cause of hyponatremia.
The major symptom is thirst. The most important signs result from brain cell shrinkage and include confusion, muscle twitching or spasms. With severe elevations, seizures and comas may occur.
Severe symptoms are usually due to acute elevation of the plasma sodium concentration to above 157 mmol/L (normal blood levels are generally about 135–145 mmol/L for adults and elderly). Values above 180 mmol/L are associated with a high mortality rate, particularly in adults. However, such high levels of sodium rarely occur without severe coexisting medical conditions. Serum sodium concentrations have ranged from 150–228 mmol/L in survivors of acute salt overdosage, while levels of 153–255 mmol/L have been observed in fatalities. Vitreous humor is considered to be a better postmortem specimen than postmortem serum for assessing sodium involvement in a death.
Anemia goes undetected in many people and symptoms can be minor. The symptoms can be related to an underlying cause or the anemia itself.
Most commonly, people with anemia report feelings of weakness or tired, and sometimes poor concentration. They may also report shortness of breath on exertion. In very severe anemia, the body may compensate for the lack of oxygen-carrying capability of the blood by increasing cardiac output. The patient may have symptoms related to this, such as palpitations, angina (if pre-existing heart disease is present), intermittent claudication of the legs, and symptoms of heart failure.
On examination, the signs exhibited may include pallor (pale skin, lining mucosa, conjunctiva and nail beds), but this is not a reliable sign. There may be signs of specific causes of anemia, e.g., koilonychia (in iron deficiency), jaundice (when anemia results from abnormal break down of red blood cells — in hemolytic anemia), bone deformities (found in thalassemia major) or leg ulcers (seen in sickle-cell disease).
In severe anemia, there may be signs of a hyperdynamic circulation: tachycardia (a fast heart rate), bounding pulse, flow murmurs, and cardiac ventricular hypertrophy (enlargement). There may be signs of heart failure.
Pica, the consumption of non-food items such as ice, but also paper, wax, or grass, and even hair or dirt, may be a symptom of iron deficiency, although it occurs often in those who have normal levels of hemoglobin.
Chronic anemia may result in behavioral disturbances in children as a direct result of impaired neurological development in infants, and reduced academic performance in children of school age. Restless legs syndrome is more common in those with iron-deficiency anemia.
Anemia is a decrease in the total amount of red blood cells (RBCs) or hemoglobin in the blood, or a lowered ability of the blood to carry oxygen. When anemia comes on slowly, the symptoms are often vague and may include feeling tired, weakness, shortness of breath or a poor ability to exercise. Anemia that comes on quickly often has greater symptoms, which may include confusion, feeling like one is going to pass out, loss of consciousness, or increased thirst. Anemia must be significant before a person becomes noticeably pale. Additional symptoms may occur depending on the underlying cause.
The three main types of anemia are due to blood loss, decreased red blood cell production, and increased red blood cell breakdown. Causes of blood loss include trauma and gastrointestinal bleeding, among others. Causes of decreased production include iron deficiency, a lack of vitamin B12, thalassemia, and a number of neoplasms of the bone marrow. Causes of increased breakdown include a number of genetic conditions such as sickle cell anemia, infections like malaria, and certain autoimmune diseases. It can also be classified based on the size of red blood cells and amount of hemoglobin in each cell. If the cells are small, it is microcytic anemia. If they are large, it is macrocytic anemia while if they are normal sized, it is normocytic anemia. Diagnosis in men is based on a hemoglobin of less than 130 to 140 g/L (13 to 14 g/dL), while in women, it must be less than 120 to 130 g/L (12 to 13 g/dL). Further testing is then required to determine the cause.
Certain groups of individuals, such as pregnant women, benefit from the use of iron pills for prevention. Dietary supplementation, without determining the specific cause, is not recommended. The use of blood transfusions is typically based on a person's signs and symptoms. In those without symptoms, they are not recommended unless hemoglobin levels are less than 60 to 80 g/L (6 to 8 g/dL). These recommendations may also apply to some people with acute bleeding. Erythropoiesis-stimulating medications are only recommended in those with severe anemia.
Anemia is the most common blood disorder, affecting about a third of the global population. Iron-deficiency anemia affects nearly 1 billion people. In 2013, anemia due to iron deficiency resulted in about 183,000 deaths – down from 213,000 deaths in 1990. It is more common in women than men, during pregnancy, and in children and the elderly. Anemia increases costs of medical care and lowers a person's productivity through a decreased ability to work. The name is derived from "", meaning "lack of blood", from ἀν- "an-", "not" and αἷμα "haima", "blood".
Presentation may be subtle; people with mild contusion may have no symptoms at all. However, pulmonary contusion is frequently associated with signs (objective indications) and symptoms (subjective states), including those indicative of the lung injury itself and of accompanying injuries. Because gas exchange is impaired, signs of low blood oxygen saturation, such as low concentrations of oxygen in arterial blood gas and cyanosis (bluish color of the skin and mucous membranes) are commonly associated. Dyspnea (painful breathing or difficulty breathing) is commonly seen, and tolerance for exercise may be lowered. Rapid breathing and a rapid heart rate are other signs. With more severe contusions, breath sounds heard through a stethoscope may be decreased, or rales (an abnormal crackling sound in the chest accompanying breathing) may be present. People with severe contusions may have bronchorrhea (the production of watery sputum). Wheezing and coughing are other signs. Coughing up blood or bloody sputum is present in up to half of cases. Cardiac output (the volume of blood pumped by the heart) may be reduced, and hypotension (low blood pressure) is frequently present. The area of the chest wall near the contusion may be tender or painful due to associated chest wall injury.
Signs and symptoms take time to develop, and as many as half of cases are asymptomatic at the initial presentation. The more severe the injury, the more quickly symptoms become apparent. In severe cases, symptoms may occur as quickly as three or four hours after the trauma. Hypoxemia (low oxygen concentration in the arterial blood) typically becomes progressively worse over 24–48 hours after injury. In general, pulmonary contusion tends to worsen slowly over a few days, but it may also cause rapid deterioration or death if untreated.
There are several terms which were in general use, but are no longer recommended.
The more common features of the disease are summarized in the acronym POEMS:
Papilledema (swelling of the optic disc) often but not always due to increased intracranial pressure) is the most common ocular sign of POEMS syndrome, occurring in ≥29% of cases. Less frequent ocular findings include cystoid macular edema, serous macular detachment, infiltrative orbitopathy, and venous sinus thrombosis.
Pulmonary disease/ Polyneuropathy: The lungs are often affected at more severe stages of the illness, although since by then physical exertion is usually limited by neuropathy, shortness of breath is unusual. Pulmonary hypertension is the most serious effect on the lungs, and there may also be restriction of chest expansion or impaired gas exchange.
Organomegaly: The liver may be enlarged, and less often the spleen or lymph nodes, though these organs usually function normally.
Edema: Leakage of fluid into the tissues is a common and often severe problem. This may take several forms, including dependent peripheral edema, pulmonary edema, effusions such as pleural effusion or ascites, or generalized capillary leakage (anasarca).
Endocrinopathy: In women, amenorrhea, and in men, gynecomastia, erectile dysfunction and testicular atrophy, are common early symptoms due to dysfunction of the gonadal axis. Other hormonal problems occurring in at least a quarter of patients include type 2 diabetes, hypothyroidism, and adrenal insufficiency.
Monoclonal paraprotein: In most cases a serum myeloma protein can be detected, although this is not universal. This may represent IgG or IgA, but the light chain type is almost always lambda. This is in contrast to most paraproteinemic neuropathies, in which the paraprotein is usually an IgM antibody.
Skin changes: A very wide variety of skin problems have been reported in association with POEMS syndrome. The most common is non-specific hyperpigmentation. The fingernails may be clubbed or white. There may be thickening of the skin, excess hair or hair in unusual places (hypertrichosis), skin angiomas or hemangiomas, or changes reminiscent of scleroderma.
Drowning is defined as respiratory impairment from being in or under a liquid. It is further classified by outcome into: death, ongoing health problems, and no ongoing health problems. Drowning itself is quick and silent, although it may be preceded by distress which is more visible.
Generally, in the early stages of drowning, very little water enters the lungs: a small amount of water entering the trachea causes a muscular spasm that seals the airway and prevents the passage of both air and water until unconsciousness occurs. This means a person drowning is unable to shout or call for help, or seek attention, as they cannot obtain enough air. The instinctive drowning response is the final set of autonomic reactions in the 20–60 seconds before sinking underwater, and to the untrained eye can look similar to calm safe behavior. Lifeguards and other persons trained in rescue learn to recognize drowning people by watching for these movements. If the process is not interrupted, loss of consciousness due to hypoxia is followed rapidly by cardiac arrest. At this stage, the process is still usually reversible by prompt and effective rescue and first aid. Survival rates depend strongly on the duration of immersion.
In 2013, there were about 1.7 million cases of drowning. Unintentional drowning is the third leading cause of unintentional injury resulting in death worldwide. In 2013, it was estimated to have resulted in 368,000 deaths, down from 545,000 deaths in 1990. Of these deaths, 82,000 occurred in children less than five years old. It accounts for 7% of all injury related deaths (excluding those due to natural disasters), with 91% of these deaths occurring in low-income and middle-income countries. Drowning occurs more frequently in males and the young. The rate of drowning in populations around the world varies widely according to their access to water, the climate and the national swimming culture.
The signs and symptoms of POEMS syndrome are highly variable. This often leads to long delays (e.g. 13–18 months) between the onset of initial symptoms and diagnosis. In addition to the signs and symptoms indicated by the POEMS acronym, the PEST acronym is used to describe some of the other signs and symptoms of the disease. PEST stands for Papilledema, evidence of Extravascular volume overload (ascites, pleural effusion, pericardial effusion, and lower extremity edema), Sclerotic bone lesions, and Thrombocytosis/erythrocytosis (i.e. increased in blood platelets and red blood cells). Other features of the disease include a tendency toward leukocytosis, blood clot formation, abnormal lung function (restrictive lung disease, pulmonary hypertension, and impaired lung diffusion capacity), very high blood levels of the cytokine vascular endothelial growth factor (VEGF), and an overlap with the signs and symptoms of multicentric Castleman disease.
Pulmonary contusion and laceration are injuries to the lung tissue. Pulmonary laceration, in which lung tissue is torn or cut, differs from pulmonary contusion in that the former involves disruption of the macroscopic architecture of the lung, while the latter does not. When lacerations fill with blood, the result is pulmonary hematoma, a collection of blood within the lung tissue. Contusion involves hemorrhage in the alveoli (tiny air-filled sacs responsible for absorbing oxygen), but a hematoma is a discrete clot of blood not interspersed with lung tissue. A collapsed lung can result when the pleural cavity (the space outside the lung) accumulates blood (hemothorax) or air (pneumothorax) or both (hemopneumothorax). These conditions do not inherently involve damage to the lung tissue itself, but they may be associated with it. Injuries to the chest wall are also distinct from but may be associated with lung injuries. Chest wall injuries include rib fractures and flail chest, in which multiple ribs are broken so that a segment of the ribcage is detached from the rest of the chest wall and moves independently.
Signs and symptoms of CVI in the leg include the following:
- Varicose veins
- Itching (pruritus)
- Hyperpigmentation
- Phlebetic lymphedema
- Chronic swelling of the legs and ankles
- Venous ulceration
CVI in the leg may cause the following:
- Venous stasis
- Ulcers.
- Stasis dermatitis, also known as varicose eczema
- Contact dermatitis. Patients with venous insufficiency have a disrupted epidermal barrier, making them more susceptible than the general population to contact sensitization and subsequent dermatitis.
- Atrophie blanche. This is an end point of a variety of conditions, appears as atrophic plaques of ivory white skin with telangiectasias. It represents late sequelae of lipodermatosclerosis where the skin has lost its nutrient blood flow.
- Lipodermatosclerosis. This is an indurated plaque in the medial malleolus.
- Malignancy. Malignant degeneration is a rare but important complication of venous disease since tumors which develop in the setting of an ulcer tend to be more aggressive.
- Pain. Pain is a feature of venous disease often overlooked and commonly undertreated.
- Anxiety.
- Depression.
- Inflammation
- Discoloration
- Skin thickening
- Cellulitis
The classic symptom of subarachnoid hemorrhage is thunderclap headache (a headache described as "like being kicked in the head", or the "worst ever", developing over seconds to minutes). This headache often pulsates towards the occiput (the back of the head). About one-third of people have no symptoms apart from the characteristic headache, and about one in ten people who seek medical care with this symptom are later diagnosed with a subarachnoid hemorrhage. Vomiting may be present, and 1 in 14 have seizures. Confusion, decreased level of consciousness or coma may be present, as may neck stiffness and other signs of meningism.
Neck stiffness usually presents six hours after initial onset of SAH. Isolated dilation of a pupil and loss of the pupillary light reflex may reflect brain herniation as a result of rising intracranial pressure (pressure inside the skull). Intraocular hemorrhage (bleeding into the eyeball) may occur in response to the raised pressure: subhyaloid hemorrhage (bleeding under the hyaloid membrane, which envelops the vitreous body of the eye) and vitreous hemorrhage may be visible on fundoscopy. This is known as Terson syndrome (occurring in 3–13 percent of cases) and is more common in more severe SAH.
Oculomotor nerve abnormalities (affected eye looking downward and outward and inability to lift the eyelid on the same side) or (loss of movement) may indicate bleeding from the posterior communicating artery. Seizures are more common if the hemorrhage is from an aneurysm; it is otherwise difficult to predict the site and origin of the hemorrhage from the symptoms. SAH in a person known to have seizures is often diagnostic of a cerebral arteriovenous malformation.
The combination of intracerebral hemorrhage and raised intracranial pressure (if present) leads to a "sympathetic surge", i.e. over-activation of the sympathetic system. This is thought to occur through two mechanisms, a direct effect on the medulla that leads to activation of the descending sympathetic nervous system and a local release of inflammatory mediators that circulate to the peripheral circulation where they activate the sympathetic system. As a consequence of the sympathetic surge there is a sudden increase in blood pressure; mediated by increased contractility of the ventricle and increased vasoconstriction leading to increased systemic vascular resistance. The consequences of this sympathetic surge can be sudden, severe, and are frequently life-threatening. The high plasma concentrations of adrenaline also may cause cardiac arrhythmias (irregularities in the heart rate and rhythm), electrocardiographic changes (in 27 percent of cases) and cardiac arrest (in 3 percent of cases) may occur rapidly after the onset of hemorrhage. A further consequence of this process is neurogenic pulmonary edema where a process of increased pressure within the pulmonary circulation causes leaking of fluid from the pulmonary capillaries into the air spaces, the alveoli, of the lung.
Subarachnoid hemorrhage may also occur in people who have had a head injury. Symptoms may include headache, decreased level of consciousness and hemiparesis (weakness of one side of the body). SAH is a frequent occurrence in traumatic brain injury, and carries a poor prognosis if it is associated with deterioration in the level of consciousness.
While thunderclap headache is the characteristic symptom of subarachnoid hemorrhage, less than 10% of those with concerning symptoms have SAH on investigations. A number of other causes may need to be considered.
Chronic venous insufficiency (CVI) is a medical condition in which blood pools in the veins, straining the walls of the vein. The most common cause of CVI is superficial venous reflux which is a treatable condition. As functional venous valves are required to provide for efficient blood return from the lower extremities, this condition typically affects the legs. If the impaired vein function causes significant symptoms, such as swelling and ulcer formation, it is referred to as chronic venous disease. It is sometimes called "chronic peripheral venous insufficiency" and should not be confused with post-thrombotic syndrome in which the deep veins have been damaged by previous deep vein thrombosis.
Most cases of CVI can be improved with treatments to the superficial venous system or stenting the deep system. Varicose veins for example can now be treated by local anesthetic endovenous surgery.
The prevalence of CVI is far higher in women than in men. The Tampere study, which examined the epidemiology of varicose veins in a large cohort of 3284 men and 3590 women, demonstrated that the prevalence of varicose veins in men and women was 18% and 42%, respectively. The condition has been known since ancient times and Hippocrates used bandaging to treat it.
As only 10 percent of people admitted to the emergency department with a thunderclap headache are having an SAH, other possible causes are usually considered simultaneously, such as meningitis, migraine, and cerebral venous sinus thrombosis. Intracerebral hemorrhage, in which bleeding occurs within the brain itself, is twice as common as SAH and is often misdiagnosed as the latter. It is not unusual for SAH to be initially misdiagnosed as a migraine or tension headache, which can lead to a delay in obtaining a CT scan. In a 2004 study, this occurred in 12 percent of all cases and was more likely in people who had smaller hemorrhages and no impairment in their mental status. The delay in diagnosis led to a worse outcome. In some people, the headache resolves by itself, and no other symptoms are present. This type of headache is referred to as "sentinel headache", because it is presumed to result from a small leak (a "warning leak") from an aneurysm. A sentinel headache still warrants investigations with CT scan and lumbar puncture, as further bleeding may occur in the subsequent three weeks.
The initial steps for evaluating a person with a suspected subarachnoid hemorrhage are obtaining a medical history and performing a physical examination. The diagnosis cannot, however, be made on clinical grounds alone and in general medical imaging and possibly a lumbar puncture is required to confirm or exclude bleeding.