Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When observing a person with strabismus, the misalignment of the eyes may be quite apparent. A patient with a constant eye turn of significant magnitude is very easy to notice. However, a small magnitude or intermittent strabismus can easily be missed upon casual observation. In any case, an eye care professional can conduct various tests, such as cover testing, to determine the full extent of the strabismus.
Symptoms of strabismus include double vision and/or eye strain. To avoid double vision, the brain may adapt by ignoring one eye. In this case, often no noticeable symptoms are seen other than a minor loss of depth perception. This deficit may not be noticeable in someone who has had strabismus since birth or early childhood, as they have likely learned to judge depth and distances using monocular cues. However, a constant unilateral strabismus causing constant suppression is a risk for amblyopia in children. Small-angle and intermittent strabismus are more likely to cause disruptive visual symptoms. In addition to headaches and eye strain, symptoms may include an inability to read comfortably, fatigue when reading, and unstable or "jittery" vision.
Strabismus may also be classified based on time of onset, either congenital, acquired, or secondary to another pathological process. Many infants are born with their eyes slightly misaligned, and this is typically outgrown by six to 12 months of age. Acquired and secondary strabismus develop later. The onset of accommodative esotropia, an overconvergence of the eyes due to the effort of accommodation, is mostly in early childhood. Acquired non-accommodative strabismus and secondary strabismus are developed after normal binocular vision has developed. In adults with previously normal alignment, the onset of strabismus usually results in double vision.
Any disease that causes vision loss may also cause strabismus, but it can also result from any severe and/or traumatic injury to the affected eye. Sensory strabismus is strabismus due to vision loss or impairment, leading to horizontal, vertical or torsional misalignment or to a combination thereof, with the eye with poorer vision drifting slightly over time. Most often, the outcome is horizontal misalignment. Its direction depends on the patient age at which the damage occurs: patients whose vision is lost or impaired at birth are more likely to develop esotropia, whereas patients with acquired vision loss or impairment mostly develop exotropia. In the extreme, complete blindness in one eye generally leads to the blind eye reverting to an anatomical position of rest.
Although many possible causes of strabismus are known, among them severe and/or traumatic injuries to the afflicted eye, in many cases no specific cause can be identified. This last is typically the case when strabismus is present since early childhood.
Results of a U.S. cohort study indicate that the incidence of adult-onset strabismus increases with age, especially after the sixth decade of life, and peaks in the eighth decade of life, and that the lifetime risk of being diagnosed with adult-onset strabismus is approximately 4%.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
Hypertropia is a condition of misalignment of the eyes (strabismus), whereby the visual axis of one eye is higher than the fellow fixating eye.
Hypotropia is the similar condition, focus being on the eye with the visual axis lower than the fellow fixating eye.
Dissociated Vertical Deviation is a special type of hypertropia leading to slow upward drift of one or rarely both eyes, usually when the patient is inattentive.
Though present from birth, symptoms of congenital fourth cranial nerve palsy may start as subtle and increase with age. Hence, diagnosis by a healthcare practitioner may not be made until later childhood or adulthood. Young children adopt a compensatory head position in order to compensate for the underacting superior oblique muscle. The characteristic head tilt is usually away from the affected side to reduce eye strain and prevent double vision (diplopia). Old photographs may reveal the presence of a consistent head tilt (ocular torticollis) from an early age. Most patients with congenital CN IV palsy have facial asymmetry due to the chronic head tilt. Other compensatory measures for congenital fourth nerve palsy are development of large vertical fusional amplitudes and lack of subjective symptoms of , even in the presence of great ocular rotation.
Congenital fourth nerve palsy may remain undetected until adulthood, when intermittent diplopia may arise, due to decompensated ability to overcome the vertical deviation. Until this occurs, many ophthalmologists and optometrists may miss the other signs and symptoms. Reduced vertical fusional reserves result from fatigue (stress, fever, other illnesses, a lot of near work) or simply the effects of old age. Diplopia from congenital fourth nerve palsy has occasionally been reported to manifest transiently during pregnancy. Congenital fourth nerve palsy may also become evident following cataract surgery once binocular vision is restored after a long period of progressive monocular visual loss and accompanying vergence decompensation. Other adult patients complain of neck pain, after years of chronic head tilting (ocular torticollis).
Congenital fourth nerve palsy can affect reading comprehension (and concentration during other near tasks) due to the increased vertical fusional demands and head tilting required to maintain single vision and prevent vertical diplopia. Some patients find they lose their place easily while reading, and find a marker or using a finger to guide them helpful.
The head posture is right 4th nerve palsy can be easily understood by this thumb rule- The body performs the action which the paralysed muscle had to perform. Keeping this thumb rule in mind, let us decipher the head posture in right 4th nerve palsy. As SO causes intorsion, the head tilts towards the left. As SO causes depression in adduction, the head turns towards left and depressed chin. So the patient has left side deflection, tilt and a downward gaze. The left SO palsy head posture can be understood similarly as well.
- "For acquired fourth nerve palsy, see fourth nerve palsy"
Congenital fourth nerve palsy is a condition present at birth characterized by a vertical misalignment of the eyes due to a weakness or paralysis of the superior oblique muscle.
Other names for fourth nerve palsy include superior oblique palsy and trochlear nerve palsy.
When looking to the right/left the nerve/muscle isn't strong enough or is too long and the eye drifts up.
Following are the features and characteristics that help in spotting this disorder:
- Low birth weight (usually under 5 pounds/2.5 kilograms)
- Delayed growth and small stature
- Developmental delay
- Limb differences (missing limbs or portions of limbs)
- Small head size (microcephaly)
- Thick eyebrows, which typically meet at midline (synophrys)
- Long eyelashes
- Short upturned nose and thin downturned lips
- Long philtrum
- Excessive body hair
- Small hands and feet
- Small widely spaced teeth
- Low-set ears
- Hearing impairments
- Vision abnormalities (e.g., ptosis, nystagmus, high myopia, hypertropia)
- Partial joining of the second and third toes
- Incurved 5th fingers (clinodactyly)
- Gastroesophageal reflux
- Seizures
- Heart defects (e.g., pulmonary stenosis, VSD, ASD, coarctation of the aorta)
- Cleft palate
- Feeding problems
- Hypoplastic genitalia
Children with this syndrome are often found to have long eyelashes, bushy eyebrows and synophrys (joined eyebrows). Body hair can be excessive and affected individuals are often shorter than their immediate family members. They present a characteristic facial phenotype and is recognizable with the Facial Dysmorphology Novel Analysis (FDNA) technology
CdLS can give rise to its own array of complexities. Children with CdLS often suffer from gastrointestinal tract difficulties, particularly gastroesophageal reflux. Vomiting, intermittent poor appetite, constipation, diarrhea or gaseous distention are known to be a regularity in cases where the GI tract problems are acute. Symptoms may range from mild to severe.
CdLS may include behavior problems, including self-stimulation, aggression, self-injury or strong preference to a structured routine. Many children with CdLS exhibit autistic-like behaviors.
Behavior problems in CdLS are not inevitable. Many behavior issues associated with CdLS are reactive (i.e., something happens within the person's body or environment to bring on the behavior) and cyclical (comes and goes). Often, an underlying medical issue causes a change in behavior. Once the medical issue is treated, the behavior diminishes.
Cornelia de Lange Syndrome (CdLS) is a very rare genetic disorder present from birth, but not always diagnosed at birth. It causes a range of physical, cognitive, and medical challenges and affects both sexes equally. The syndrome is named after Dutch pediatrician Cornelia Catharina de Lange, who described it.
It is often termed Bushy Syndrome and is also known as Amsterdam dwarfism. It is a genetic disorder that can lead to severe developmental anomalies. It affects the physical and intellectual development of a child. Exact incidence is unknown, but it is estimated at 1 in 10,000 to 30,000.