Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Developmental toxicity is any structural or functional alteration, reversible or irreversible, which interferes with homeostasis, normal growth, differentiation, development or behavior, and which is caused by environmental insult (including drugs, lifestyle factors such as alcohol, diet, and environmental toxic chemicals or physical factors). It is the study of adverse effects on the development of the organism resulting from exposure to toxic agents before conception (either parent), during prenatal development, or post-natally until puberty. The substance that causes developmental toxicity from embryonic stage to birth is called teratogens. The effect of the developmental toxicants depends on the type of substance, dose and duration and time of exposure.
Certain Pathogens are also included since the toxins they secrete are known to cause adverse effects on the development of the organism when the mother or fetus is infected. Developmental toxicology is a science studying adverse developmental outcomes. This term has widely replaced the early term for the study of primarily structural congenital abnormalities, teratology, to enable inclusion of a more diverse spectrum of congenital disorders. Typical factors causing developmental toxicity are radiation, infections (e.g. rubella), maternal metabolic imbalances (e.g. alcoholism, diabetes, folic acid deficiency), drugs (e.g. anticancer drugs, tetracyclines, many hormones, thalidomide), and environmental chemicals (e.g. mercury, lead, dioxins, PBDEs, HBCD, tobacco smoke). The first-trimester exposure is considered the most potential for developmental toxicity.
Once fertilization has taken place, the toxicants in the environment can pass through the mother to the developing embryo or fetus across the placental barrier. The fetus is at greatest risk during the first 14th to 60th day of the pregnancy when the major organs are being formed. However, depending on the type of toxicant and amount of exposure, a fetus can be exposed toxicant at any time during pregnancy. For example, exposure to a particular toxicant at one time in the pregnancy may result in organ damage and at another time in the pregnancy could cause death of the fetus and miscarriage. There are a number of chemicals, biological agents (such as bacteria and viruses), and physical agents (such as radiation) used in a variety of workplaces that are known to cause developmental disorders. Developmental disorders can include a wide range of physical abnormalities, such as bone or organ deformities, or behavioral and learning problems, such as a mental retardation. Exposures to some chemicals during pregnancy can lead to the development of cancer later in the life of the child and are called transgenerational carcinogens. Exposure to toxicants during the second and the third trimester of a pregnancy can lead to slow fetal grown and result in low birth weight.
Affected newborns generally have striking neurological defects and seizures. Severely impaired development is common, but disturbances in motor functions may not appear until later in life.
Infants with microcephaly are born with either a normal or reduced head size. Subsequently, the head fails to grow, while the face continues to develop at a normal rate, producing a child with a small head and a receding forehead, and a loose, often wrinkled scalp. As the child grows older, the smallness of the skull becomes more obvious, although the entire body also is often underweight and dwarfed. Development of motor functions and speech may be delayed. Hyperactivity and intellectual disability are common occurrences, although the degree of each varies. Convulsions may also occur. Motor ability varies, ranging from in some to spastic quadriplegia in others.
Several terms are used to describe congenital abnormalities. (Some of these are also used to describe noncongenital conditions, and more than one term may apply in an individual condition.)
Intrauterine hypoxia occurs when the fetus is deprived of an adequate supply of oxygen. It may be due to a variety of reasons such as prolapse or occlusion of the umbilical cord, placental infarction and maternal smoking. Intrauterine growth restriction (IUGR) may cause or be the result of hypoxia. Intrauterine hypoxia can cause cellular damage that occurs within the central nervous system (the brain and spinal cord). This results in an increased mortality rate, including an increased risk of sudden infant death syndrome (SIDS). Oxygen deprivation in the fetus and neonate have been implicated as either a primary or as a contributing risk factor in numerous neurological and neuropsychiatric disorders such as epilepsy, ADHD, eating disorders and cerebral palsy.
A limb anomaly is called a dysmelia. These include all forms of limbs anomalies, such as amelia, ectrodactyly, phocomelia, polymelia, polydactyly, syndactyly, polysyndactyly, oligodactyly, brachydactyly, achondroplasia, congenital aplasia or hypoplasia, amniotic band syndrome, and cleidocranial dysostosis.
Congenital anomalies of the heart include patent ductus arteriosus, atrial septal defect, ventricular septal defect, and tetralogy of fallot.
Congenital anomalies of the nervous system include neural tube defects such as spina bifida, meningocele, meningomyelocele, encephalocele and anencephaly. Other congenital anomalies of the nervous system include the Arnold-Chiari malformation, the Dandy-Walker malformation, hydrocephalus, microencephaly, megalencephaly, lissencephaly, polymicrogyria, holoprosencephaly, and agenesis of the corpus callosum.
Congenital anomalies of the gastrointestinal system include numerous forms of stenosis and atresia, and perforation, such as gastroschisis.
Congenital anomalies of the kidney and urinary tract (CAKUT) include renal parenchyma, kidneys, and urinary collecting system.
Defects can be bilateral or unilateral, and different defects often coexist in an individual child
Microcephaly is a medical condition in which the brain does not develop properly resulting in a smaller than normal head. Microcephaly may be present at birth or it may develop in the first few years of life. Often people with the disorder have an intellectual disability, poor motor function, poor speech, abnormal facial features, seizures, and dwarfism.
The disorder may stem from a wide variety of conditions that cause abnormal growth of the brain, or from syndromes associated with chromosomal abnormalities. A homozygous mutation in one of the "microcephalin" genes causes primary microcephaly. It serves as an important neurological indication or warning sign, but no uniformity exists in its definition. It is usually defined as a head circumference (HC) more than two standard deviations below the mean for age and sex. Some academics advocate defining it as head circumference more than three standard deviations below the mean for the age and sex.
There is no specific treatment that returns the head size to normal. In general, life expectancy for individuals with microcephaly is reduced and the prognosis for normal brain function is poor. Occasionally, some will grow normally and develop normal intelligence.
Encephaloceles are characterized by protrusions of the brain through the skull that are sac-like and covered with membrane. They can be a groove down the middle of the upper part of the skull, between the forehead and nose, or the back of the skull. Encephaloceles are often obvious and diagnosed immediately. Sometimes small encephaloceles in the nasal and forehead are undetected.
Hydranencephaly is a condition in which the cerebral hemispheres are missing and instead filled with sacs of cerebrospinal fluid.
There are various causes for intrauterine hypoxia (IH). The most preventable cause is maternal smoking. Cigarette smoking by expectant mothers has been shown to have a wide variety of deleterious effects on the developing fetus. Among the negative effects are carbon monoxide induced tissue hypoxia and placental insufficiency which causes a reduction in blood flow from the uterus to the placenta thereby reducing the availability of oxygenated blood to the fetus. Placental insufficiency as a result of smoking has been shown to have a causal effect in the development of pre-eclampsia. While some previous studies have suggested that carbon monoxide from cigarette smoke may have a protective effect against preeclampsia, a recent study conducted by the Genetics of Pre-Eclampsia Consortium (GOPEC) in the United Kingdom found that smokers were five times more likely to develop pre-eclampsia.
Nicotine alone has been shown to be a teratogen which affects the autonomic nervous system, leading to increased susceptibility to hypoxia-induced brain damage.
Maternal anemia in which smoking has also been implicated is another factor associated with IH/BA. Smoking by expectant mothers causes a decrease in maternal nucleated red blood cells (NRBC), thereby reducing the amount of red blood cells available for oxygen transport.
The perinatal brain injury occurring as a result of birth asphyxia, manifesting within 48 hours of birth, is a form of hypoxic ischemic encephalopathy.
The typical signs of malignant hyperthermia are due to a hypercatabolic state, which presents as a very high temperature, an increased heart rate and abnormally rapid breathing, increased carbon dioxide production, increased oxygen consumption, mixed acidosis, rigid muscles, and rhabdomyolysis. These signs can develop any time during the administration of the anesthetic triggering agents. It is difficult to find confirmed cases in the postoperative period more than several minutes after discontinuation of anesthetic agents.
The following features are observed with VACTERL association:
- V - Vertebral anomalies
- A - Anorectal malformations
- C - Cardiovascular anomalies
- T - Tracheoesophageal fistula
- E - Esophageal atresia
- R - Renal (Kidney) and/or radial anomalies
- L - Limb defects
Although it was not conclusive whether VACTERL should be defined by at least two or three component defects, it is typically defined by the presence of at least three of the above congenital malformations.
Renal (kidney) defects are seen in approximately 50 percent of patients with VACTERL association. In addition, up to 35 percent of patients with VACTERL association have a single umbilical artery (there are usually two arteries and one vein) which is often associated with additional kidney or urologic problems. Renal abnormalities in VACTERL association can be severe, with incomplete formation of one or both kidneys or urologic abnormalities such as obstruction of outflow of urine from the kidneys or severe reflux (backflow) of urine into the kidneys from the bladder. These problems can cause kidney failure early in life and may require kidney transplant. Many of these problems can be corrected surgically before any damage can occur.
Malignant hyperthermia (MH) is a type of severe reaction that occurs to particular medications used during general anesthesia, among those who are susceptible. Symptoms include muscle rigidity, high fever, and a fast heart rate. Complications can include rhabdomyolysis and high blood potassium. Most people who are susceptible are generally otherwise normal when not exposed.
The cause of MH is the use of certain volatile anesthetic agents or succinylcholine in those who are susceptible. Susceptibility can occur due to at least six genetic mutations, with the most common one being of the RYR1 gene. Susceptibility is often inherited from a person's parents in an autosomal dominant manner. The condition may also occur as a new mutation or be associated with a number of inherited muscle diseases, such as central core disease.
In susceptible individuals, the medications induce the release of stored calcium ions within muscle cells. The resulting increase in calcium concentrations within the cells cause the muscle fibers to contract. This generates excessive heat and results in metabolic acidosis. Diagnosis is based on symptoms in the appropriate situation. Family members may be tested to see if they are susceptible by muscle biopsy or genetic testing.
Treatment is with dantrolene and rapid cooling along with other supportive measures. The avoidance of potential triggers is recommended in susceptible people. The condition affects one in 5,000 to 50,000 cases where people are given anesthetic gases. Males are more often affected than females. The risk of death with proper treatment is about 5% while without it is around 75%. While cases that appear similar to MH have been documented since the early 20th century, the condition was only formally recognized in 1960.
An early stage of hyperthermia can be "heat exhaustion" (or "heat prostration" or "heat stress"), whose symptoms include heavy sweating, rapid breathing and a fast, weak pulse. If the condition progresses to heat stroke, then hot, dry skin is typical as blood vessels dilate in an attempt to increase heat loss. An inability to cool the body through perspiration may cause the skin to feel dry.
Other signs and symptoms vary. Accompanying dehydration can produce nausea, vomiting, headaches, and low blood pressure and the latter can lead to fainting or dizziness, especially if the standing position is assumed quickly.
In severe heat stroke, there may be confused, hostile, or seemingly intoxicated behavior. Heart rate and respiration rate will increase (tachycardia and tachypnea) as blood pressure drops and the heart attempts to maintain adequate circulation. The decrease in blood pressure can then cause blood vessels to contract reflexively, resulting in a pale or bluish skin color in advanced cases. Young children, in particular, may have seizures. Eventually, organ failure, unconsciousness and death will result.
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
In humans, hyperthermia is defined as a temperature greater than , depending on the reference used, that occurs without a change in the body's temperature set point.
The normal human body temperature can be as high as in the late afternoon. Hyperthermia requires an elevation from the temperature that would otherwise be expected. Such elevations range from mild to extreme; body temperatures above can be life-threatening.
The symptoms of Freeman–Sheldon syndrome include drooping of the upper eyelids, strabismus, low-set ears, a long philtrum, gradual hearing loss, scoliosis, and walking difficulties. Gastroesophageal reflux has been noted during infancy, but usually improves with age. The tongue may be small, and the limited movement of the soft palate may cause nasal speech. Often there is an H- or Y-shaped dimpling of the skin over the chin.
Fetal alcohol spectrum disorders (FASD) is a term that constitutes the set of conditions that can occur in a person whose mother drank alcohol during the course of pregnancy. These effects can include physical and cognitive problems. FASD patient usually has a combination of these problems. Extent of effect depends on exposure frequency, dose and rate of ethanol elimination from amniotic fluid. FAS disrupts normal development of the fetus, which may cause certain developmental stages to be delayed, skipped, or immaturely developed. Since alcohol elimination is slow in a fetus than in an adult and the fact that they do not have a developed liver to metabolize the alcohol, alcohol levels tend to remain high and stay in the fetus longer. Birth defects associated with prenatal exposure to alcohol can occur in the first three to eight weeks of pregnancy before a woman even knows that she is pregnant.
Aglossia (aglossia congenita) is a congenital defect resulting in a partial development or complete absence of a tongue.
Aglossiais commonly associated with craniofacial and limb defects (Adactylia syndrome) and is thought to belong to a family of oromandibular limb hypogenesis syndrome or OLHS. It is believed to be caused by heat-induced vascular disruption near the fourth week of embryonic development.
The first known case was reported in the early 18th century by a member of the prominent De Jussieu family in France and cases to this day remain rare.
The types of CMS are classified into three categories: presynaptic, postsynaptic, and synaptic.
- "Presynaptic" symptoms include brief stops in breathing, weakness of the eye, mouth, and throat muscles. These symptoms often result in double vision and difficulty chewing and swallowing.
- "Postsynaptic" symptoms in infants include severe muscle weakness, feeding and respiratory problems, and delays in the ability to sit, crawl, and walk.
- "Synaptic" symptoms include early childhood feeding and respiratory problems, reduced mobility, curvature of the spine, and weakness, which causes a delay in motor milestones.
Onset symptoms for all ages may include droopy eyelids. A particular form of postsynaptic CMS (slow-channel CMS) includes severe weakness beginning in infancy or childhood that progresses and leads to loss of mobility and respiratory problems in adolescence or later life.
Most people with hypohidrotic ectodermal dysplasia have a reduced ability to sweat (hypohidrosis) because they have fewer sweat glands than normal or their sweat glands do not function properly. Sweating is a major way that the body controls its temperature; as sweat evaporates from the skin, it cools the body. An inability to sweat can lead to a dangerously high body temperature (hyperthermia) particularly in hot weather. In some cases, hyperthermia can cause life-threatening medical problems.
Affected individuals tend to have sparse scalp and body hair (hypotrichosis). The hair is often light-coloured, brittle, and slow-growing. This condition is also characterized by absent teeth (hypodontia) or teeth that are malformed. The teeth that are present are frequently small and pointed.
Hypohidrotic ectodermal dysplasia is associated with distinctive facial features including a prominent forehead, thick lips, and a flattened bridge of the nose. Additional features of this condition include thin, wrinkled, and dark-colored skin around the eyes; chronic skin problems such as eczema; and a bad-smelling discharge from the nose (ozena).
Hypohidrotic ectodermal dysplasia is the most common form of ectodermal dysplasia in humans. It is estimated to affect at least 1 in 17,000 people worldwide.
Freeman–Sheldon syndrome is a type of distal arthrogryposis, related to distal arthrogryposis type 1 (DA1). In 1996, more strict criteria for the diagnosis of Freeman–Sheldon syndrome were drawn up, assigning Freeman–Sheldon syndrome as distal arthrogryposis type 2A (DA2A).
On the whole, DA1 is the least severe; DA2B is more severe with additional features that respond less favourably to therapy. DA2A (Freeman–Sheldon syndrome) is the most severe of the three, with more abnormalities and greater resistance to therapy.
Freeman–Sheldon syndrome has been described as a type of congenital myopathy.
In March 2006, Stevenson et al. published strict diagnostic criteria for distal arthrogryposis type 2A (DA2A) or Freeman–Sheldon syndrome. These included two or more features of distal arthrogryposis: microstomia, whistling-face, nasolabial creases, and 'H-shaped' chin dimple.
Cockayne syndrome (CS), also called Neill-Dingwall syndrome, is a rare and fatal autosomal recessive neurodegenerative disorder characterized by growth failure, impaired development of the nervous system, abnormal sensitivity to sunlight (photosensitivity), eye disorders and premature aging. Failure to thrive and neurological disorders are criteria for diagnosis, while photosensitivity, hearing loss, eye abnormalities, and cavities are other very common features. Problems with any or all of the internal organs are possible. It is associated with a group of disorders called leukodystrophies, which are conditions characterized by degradation of neurological white matter. The underlying disorder is a defect in a DNA repair mechanism. Unlike other defects of DNA repair, patients with CS are not predisposed to cancer or infection. Cockayne syndrome is a rare but destructive disease usually resulting in death within the first or second decade of life. The mutation of specific genes in Cockayne syndrome is known, but the widespread effects and its relationship with DNA repair is yet to be well understood.
It is named after English physician Edward Alfred Cockayne (1880–1956) who first described it in 1936 and re-described in 1946. Neill-Dingwall syndrome was named after Mary M. Dingwall and Catherine A. Neill. These women described the case of two brothers with Cockayne syndrome and asserted it was the same disease described by Cockayne. In their article the women contributed to the symptoms of the disease through their discovery of calcifications in the brain. They also compared Cockayne syndrome to what is now known as Hutchinson–Gilford progeria syndrome (HGPS), then called progeria, due to the advanced aging that characterizes both disorders.
Gillespie syndrome, also called aniridia, cerebellar ataxia and mental deficiency. is a rare genetic disorder. The disorder is characterized by partial aniridia (meaning that part of the iris is missing), ataxia (motor and coordination problems), and, in most cases, intellectual disability. It is heterogeneous, inherited in either an autosomal dominant or autosomal recessive manner. Gillespie syndrome was first described by American ophthalmologist Fredrick Gillespie in 1965.
Congenital myasthenic syndrome (CMS) is an inherited neuromuscular disorder caused by defects of several types at the neuromuscular junction. The effects of the disease are similar to Lambert-Eaton Syndrome and myasthenia gravis, the difference being that CMS is not an autoimmune disorder.