Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common facial features of SLOS include microcephaly, bitemporal narrowing (reduced distance between temples), ptosis, a short and upturned nose, micrognathia, epicanthal folds, and capillary hemangioma of the nose. Other physical characteristics include:
- low-set and posteriorly rotated ears
- high-arched, narrow, hard palate
- cleft lip/palate
- agenesis or hypoplasia of the corpus callosum
- cerebellar hypoplasia
- increased ventricular size
- decreased frontal lobe size
- polydactyly of hands or feet
- short, proximally placed thumb
- other finger malformations
- syndactyly of second and third toes
- ambiguous or female-like male genitalia
- congenital heart defects
- renal, pulmonary, liver and eye abnormalities
SLOS can present itself differently in different cases, depending on the severity of the mutation and other factors. Originally, SLOS patients were classified into two categories (classic and severe) based on external behaviours, physical characteristics, and other clinical features. Since the discovery of the specific biochemical defect responsible for SLOS, patients are given a severity score based on their levels of cerebral, ocular, oral, and genital defects. It is then used to classify patients as having mild, classical, or severe SLOS.
Many of the physical features associated with the disorder are congenital. Characteristic craniofacial abnormalities typically include a long, narrow head that is disproportionate to the body size, a broad and prominent forehead, and a triangular-shaped face with a hypoplastic midface, pointed chin, prominent mouth, fleshy tipped upturned nose, large ears, and full lips. The teeth may be abnormally crowded together in some affected individuals.
Skeletal anomalies aren't present at birth but develop in the individual and include delayed bone maturation, slender long tubular bones, and tall vertebral bodies. Joint hyper-mobility and increased risk of hip dislocation has been presented in individuals. Abnormal spinal curvature, either kyhoscholiosis or hyperlordosis, causing back pain can also be experienced from this disorder.
Although confirmation of a specific genetic marker is in a significant number of individuals, there are no tests to clearly determine if this is what a person has. As a 'syndrome' a diagnosis is typically given for children upon confirmation of the presence of several 'symptoms' listed below. Symptoms are Intrauterine Growth Restriction (IUGR) combined with some of the following:
- Often small for gestational age (SGA) at birth (birth weight less than 2.8 kg)
- Feeding problems: the baby is uninterested in feeding and takes only small amounts with difficulty
- Hypoglycemia
- Excessive sweating as a baby, especially at night, and a greyness or pallor of the skin. This may be a symptom of hypoglycemia
- Triangular shaped face with a small jaw and a pointed chin that tends to lessen slightly with age. The mouth tends to curve down
- A blue tinge to the whites of the eyes in younger children
- Head circumference may be of normal size and disproportionate to a small body size
- Wide and late-closing fontanelle
- Clinodactyly
- Body asymmetry: one side of the body grows more slowly than the other
- Continued poor growth with no "catch up" into the normal centile lines on growth chart
- Precocious puberty (occasionally)
- Low muscle tone
- Gastroesophageal reflux disease
- A striking lack of fat
- Late closing of the opening between the heart hemispheres
- Constipation (sometimes severe)
The average adult height for patients without growth hormone treatment is 4'11" for males and 4'7" for females.
Pyridoxine-dependent epilepsy (PDE), also referred to as pyridoxine-dependent seizure (PDS) or vitamin B6 responsive epilepsy, is an extremely rare genetic disorder characterized by intractable seizures in the prenatal and neonatal period. The disorder was first recognized in the 1950s, with the first description provided by Hunt et al. in 1954. More recently, pathogenic variants within the ALDH7A1 gene have been identified to cause PDE.
The syndrome is a rare clinical disorder.
- Physical
- Overgrowth
- Accelerated skeletal maturation
- Dysmorphic facial features
- Prominent eyes
- Bluish sclerae
- Coarse eyebrows
- Upturned nose
- Radiologic examination
- Accelerated osseous maturation
- Phalangeal abnormalities
- Tubular thinning of the long bones
- Skull abnormalities
- Mental
- Often associated with intellectual disability (of variable degree)
Silver–Russell syndrome (SRS), also called Silver–Russell dwarfism or Russell–Silver syndrome (RSS) is a growth disorder occurring in approximately 1/50,000 to 1/100,000 births. In the United States it is usually referred to as Russell–Silver syndrome, and Silver–Russell syndrome elsewhere. It is one of 200 types of dwarfism and one of five types of primordial dwarfism and is one of the few forms that is considered treatable in some cases.
There is no statistical significance of the syndrome occurring preferentially in either males or females.
PDE is inherited in an autosomal recessive manner and is estimated to affect around 1 in 400,000 to 700,000 births, though one study conducted in Germany estimated a prevalence of 1 in 20,000 births. The ALDH7A1 gene encodes for the enzyme antiquitin or α -aminoadipic semialdehyde dehydrogenase, which is involved with the catabolism of lysine.
Respiratory complications are often cause of death in early infancy.
The symptoms of Sly syndrome are similar to those of Hurler syndrome (MPS I). The symptoms include:
- in the head, neck, and face: coarse (Hurler-like) facies and macrocephaly, frontal prominence, premature closure of sagittal lambdoid sutures, and J-shaped sella turcica
- in the eyes: corneal opacity and iris coloboma
- in the nose: anteverted nostrils and a depressed nostril bridge
- in the mouth and oral areas: prominent alveolar processes and cleft palate
- in the thorax: usually pectus carinatum or exacavatum and oar-shaped ribs; also a protruding abdomen and inguinal or umbilical hernia
- in the extremities: talipes, an underdeveloped ilium, aseptic necrosis of femoral head, and shortness of tubular bones occurs
- in the spine: kyphosis or scoliosis and hook-like deformities in thoracic and lumbar vertebrate
- in the bones: dysostosis multiplex
In addition recurrent pulmonary infections occur. Hepatomegaly occurs in the gastrointestinal system. Splenomegaly occurs in the hematopoietic system. Inborn mucopolysaccharide metabolic disorders due to β-glucuronidase deficiency with granular inclusions in granulocytes occurs in the biochemical and metabolic systems. Growth and motor skills are affected, and mental retardation also occurs.
Individuals with Refsum disease present with neurologic damage, cerebellar degeneration, and peripheral neuropathy. Onset is most commonly in childhood/adolescence with a progressive course, although periods of stagnation or remission occur. Symptoms also include ataxia, scaly skin (ichthyosis), difficulty hearing, and eye problems including retinitis pigmentosa, cataracts, and night blindness. In 80% of patients diagnosed with Refsum disease, sensorineural hearing loss has been reported. This is hearing loss as the result of damage to the inner ear or the nerve connected to ear to the brain.
Transaldolase deficiency is a disease characterised by abnormally low levels of the Transaldolase enzyme. It is a metabolic enzyme involved in the pentose phosphate pathway. It is caused by mutation in the transaldolase gene (TALDO1). It was first described by Verhoeven et al. in 2001.
Greig cephalopolysyndactyly syndrome is a disorder that affects development of the limbs, head, and face. The features of this syndrome are highly variable, ranging from very mild to severe. People with this condition typically have one or more extra fingers or toes (polydactyly) or an abnormally wide thumb or big toe (hallux).
The skin between the fingers and toes may be fused (cutaneous syndactyly). This disorder is also characterized by widely spaced eyes (ocular hypertelorism), an abnormally large head size (macrocephaly), and a high, prominent forehead. Rarely, affected individuals may have more serious medical problems including seizures, mental retardation, and developmental delay.
Schwartz–Jampel syndrome (SJS) is a rare genetic disease caused by a mutation in the HSPG2 gene, which makes the protein perlecan, and causing osteochondrodysplasia associated with myotonia.
Most people with Schwartz–Jampel syndrome have a nearly normal life expectancy.
Symptoms of Lafora disease begin to develop during early adolescent years and symptoms progress to worsen as time passes. The first ten years of life there is generally no indication of the presence of the disease. The most common feature of Lafora disease is seizures that have been reported mainly as occipital seizures and myoclonic seizures with some cases of generalized tonic-clonic seizures, atypical absence seizures, and atonic and complex partial seizures. Other symptoms common with the seizures are drop attacks, ataxia, temporary blindness, visual hallucinations, and a quickly-developing and dramatic dementia.
Other common signs and symptoms associated with Lafora disease are behavioral changes because of the frequency of seizures. Over time those affected with Lafora disease have brain changes that cause things such as confusion, speech difficulties, depression, decline in intellectual function, and impaired judgement and memory. If area's of the cerebellum are affected by seizures then it is common to see issues with speech, coordination, and balance in Lafora patients.
For dogs that are affected with Lafora disease, common symptoms are rapid shuddering, shaking, or jerking of the canine's head backwards, high pitched vocalizations that could indicate the dog is panicking, seizures, and as the disease progresses dementia, blindness, and loss of balance.
Sly syndrome, also called mucopolysaccharidosis type VII (MPS 7), is an autosomal recessive lysosomal storage disease characterized by a deficiency of the enzyme β-glucuronidase, a lysosomal enzyme. Sly syndrome belongs to a group of disorders known as mucopolysaccharidoses, which are lysosomal storage diseases. In Sly syndrome, the deficiency in β-glucuronidase leads to the accumulation of certain complex carbohydrates (mucopolysaccharides) in many tissues and organs of the body.
It was named after its discoverer William S. Sly, an American biochemist who has spent nearly his entire academic career at Saint Louis University.
Relationships between the disease and perlecan deficiency have been studied.
Lafora disease, also called Lafora progressive myoclonic epilepsy or MELF, is a fatal autosomal recessive genetic disorder characterized by the presence of inclusion bodies, known as Lafora bodies, within the cytoplasm of the cells in the heart, liver, muscle, and skin. Lafora disease is also a neurodegenerative disease that causes impairment in the development of cerebral cortical neurons and it is a glycogen metabolism disorder.
Dogs can also have the condition. Typically Lafora is rare in American children but has a high occurrence in children from Southern European descent (Italy, France, Spain) and can also be found in children from South Asian countries (Pakistan, India) and even as far south as North Africa. As for canines, Lafora disease can spontaneously occur in any breed but the Miniature Wire Haired Dachshund, Bassett Hound, and the Beagle are predisposed to LD.
Most patients with this disease do not live past the age of twenty-five, and death within ten years of symptoms is usually inevitable. At present, there is no cure for this disease but there are ways to deal with symptoms through treatments and medications.
Diencephalic syndrome, diencephalic syndrome of emaciation or Russell's syndrome is a rare neurological disorder seen in infants and children and characterised by failure to thrive and severe emaciation despite normal or slightly decreased caloric intake. Classically there is also locomotor hyperactivity and euphoria. Less commonly diencephalic syndrome may involve skin pallor without anaemia, hypoglycaemia, and hypotension. The syndrome is a rare but potentially fatal cause of failure to thrive in children. Failure to thrive presents on average at 7 months of age. Of note the syndrome is not associated with developmental delay. There may be associated hydrocephalus.
Diencephalic syndrome was first described by Russell in 1951. It is usually caused by a brain tumor such as a low-grade glioma or astrocytoma located in the hypothalamic-optic chiasmatic region. It is not yet understood how diencephalic syndrome causes the effects on appetite and metabolism which are seen, though inappropriately high growth hormone release has been proposed, as has excessive β-lipotropin secretion and overall increased metabolic demand. It is treated with nutritional optimisation while the underlying lesion is treated with chemotherapy, surgery or radiotherapy.
Refsum disease, also known as classic or adult Refsum disease, heredopathia atactica polyneuritiformis, phytanic acid oxidase deficiency and phytanic acid storage disease, is an autosomal recessive neurological disease that results from the over-accumulation of phytanic acid in cells and tissues. It is one of several disorders named after Norwegian neurologist Sigvald Bernhard Refsum (1907–1991). Refsum disease typically is adolescent onset and is diagnosed by above average levels of phytanic acid. Humans obtain the necessary phytanic acid primarily through diet. It is still unclear what function phytanic acid plays physiologically in humans, but has been found to regulate fatty acid metabolism in the liver of mice.
Raine syndrome (RNS), also called osteosclerotic bone dysplasia, is a rare autosomal recessive congenital disorder characterized by craniofacial anomalies including microcephaly, noticeably low set ears, osteosclerosis, a cleft palate, gum hyperplasia, a hypoplastic nose, and eye proptosis. It is considered to be a lethal disease, and usually leads to death within a few hours of birth. However, a recent report describes two studies in which children with Raine Syndrome have lived to 8 and 11 years old, so it is currently proposed that there is a milder expression that the phenotype can take (Simpson 2009).
It was first characterized in 1989 in a report that was published on an infant that had been born with an unknown syndrome, that later came to be called Raine Syndrome.
The current research describes Raine Syndrome as a neonatal osteosclerotic bone dysplasia, indicated by its osteosclerotic symptoms that are seen in those suffering from the disease. It has been found that a mutation in the gene FAM20C is the cause of the Raine Syndrome phenotype. This microdeletion mutation leads to an unusual chromosome 7 arrangement. The milder phenotypes of Raine Syndrome, such as those described in Simpson’s 2007 report, suggest that Raine Syndrome resulting from missense mutations may not be as lethal as the other described mutations (OMIM). This is supported by findings from Fradin et al. (2011), who reported on children with missense mutations to FAM20C and lived to ages 1 and 4 years, relatively much longer than the life spans of the previously reported children. Simpson et al.’s (2007) report states that to date, effected individuals have had chromosome 7 uniparental isodisomy and a 7p telomeric microdeletion. They had abnormal chromosome 7 arrangements, with microdeletions of their D7S2477 and D7S1484 markers (Simpson 2007).
Raine Syndrome appears to be an autosomal recessive disease. There are reports of recurrence in children born of the same parents, and an increased occurrence in children of closely related, genetically similar parents. Individuals with Raine Syndrome were either homozygous or compound heterozygous for the mutation of FAM20C. Also observed have been nonsynonomous mutation and splice-site changes (Simpson et al. 2007).
FAM20C, located on chromosome 7p22.3, is an important molecule in bone development. Studies in mice have demonstrated its importance in the mineralization of bones in teeth in early development (OMIM, Simpson et al. 2007, Wang et al. 2010). FAM20C stands for “family with sequence similarity 20, member C.” It is also commonly referred to as DMP-4. It is a Golgi-enriched fraction casein kinase and an extracellular serine/threonine protein kinase. It is 107,743 bases long, with 10 exons and 584 amino acids (Weizmann Institute of Science).
Direct sequence analysis of genomic DNA from blood can be used to perform a mutation analysis for the TALDO1 gene responsible for the Transaldolase enzyme.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Rudiger syndrome is a congenital disorder characterized by the association of severe growth retardation with abnormalities of the extremities, urogenital abnormalities and facial abnormalities. It has been described in a family where an affected brother and sister died as infants. Both autosomal recessive and autosomal dominant inheritance have been suggested with the disorder.
The features ectrodactyly, ectodermal dysplasia and cleft palate have been described with Rudiger syndrome, giving it the rarely used designation "EEC syndrome". However, this is not to be confused with the formal EEC syndrome associated with chromosome 7.
It was characterized in 1971.