Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In those with low volume or hypovolemia:
- Inadequate intake of free water associated with total body sodium depletion. Typically in elderly or otherwise disabled patients who are unable to take in water as their thirst dictates and also are sodium depleted. This is the most common cause of hypernatremia.
- Excessive losses of water from the urinary tract – which may be caused by glycosuria, or other osmotic diuretics – leads to a combination of sodium and free water losses.
- Water losses associated with extreme sweating.
- Severe watery diarrhea
The major symptom is thirst. The most important signs result from brain cell shrinkage and include confusion, muscle twitching or spasms. With severe elevations, seizures and comas may occur.
Severe symptoms are usually due to acute elevation of the plasma sodium concentration to above 157 mmol/L (normal blood levels are generally about 135–145 mmol/L for adults and elderly). Values above 180 mmol/L are associated with a high mortality rate, particularly in adults. However, such high levels of sodium rarely occur without severe coexisting medical conditions. Serum sodium concentrations have ranged from 150–228 mmol/L in survivors of acute salt overdosage, while levels of 153–255 mmol/L have been observed in fatalities. Vitreous humor is considered to be a better postmortem specimen than postmortem serum for assessing sodium involvement in a death.
The clinical manifestation is similar to neurogenic diabetes insipidus, presenting with excessive thirst and excretion of a large amount of dilute urine. Dehydration is common, and incontinence can occur secondary to chronic bladder distension. On investigation, there will be an increased plasma osmolarity and decreased urine osmolarity. As pituitary function is normal, ADH levels are likely to be abnormal or raised. Polyuria will continue as long as the patient is able to drink. If the patient is unable to drink and is still unable to concentrate the urine, then hypernatremia will ensue with its neurologic symptoms.
Nephrogenic diabetes insipidus (also known as renal diabetes insipidus) is a form of diabetes insipidus primarily due to pathology of the kidney. This is in contrast to central/neurogenic diabetes insipidus, which is caused by insufficient levels of antidiuretic hormone (ADH, that is, arginine vasopressin or AVP). Nephrogenic diabetes insipidus is caused by an improper response of the kidney to ADH, leading to a decrease in the ability of the kidney to concentrate the urine by removing free water.
Excessive urination and extreme thirst and increased fluid intake (especially for cold water and sometimes ice or ice water) are typical for DI. The symptoms of excessive urination and extreme thirst are similar to what is seen in untreated diabetes mellitus, with the distinction that the urine does not contain glucose. Blurred vision is a rarity. Signs of dehydration may also appear in some individuals, since the body cannot conserve much (if any) of the water it takes in.
Extreme urination continues throughout the day and the night. In children, DI can interfere with appetite, eating, weight gain, and growth, as well. They may present with fever, vomiting, or diarrhea. Adults with untreated DI may remain healthy for decades as long as enough water is consumed to offset the urinary losses. However, there is a continuous risk of dehydration and loss of potassium that may lead to hypokalemia.
Antidiuretic hormone (ADH) is released from the posterior pituitary for a number of physiologic reasons. The majority of people with hyponatremia, other than those with excessive water intake (polydipsia) or renal salt wasting, will have elevated ADH as the cause of their hyponatremia. However, not every person with hyponatremia and elevated ADH has SIADH. One approach to a diagnosis is to divide ADH release into appropriate (not SIADH) or inappropriate (SIADH).
Appropriate ADH release can be a result of hypovolemia, a so-called osmotic trigger of ADH release. This may be true hypovolemia, as a result of dehydration with fluid losses replaced by free water. It can also be perceived hypovolemia, as in the conditions of congestive heart failure (CHF) and cirrhosis in which the kidneys perceive a lack of intravascular volume. The hyponatremia caused by appropriate ADH release (from the kidneys' perspective) in both CHF and cirrhosis have been shown to be an independent poor prognostic indicator of mortality.
Appropriate ADH release can also be a result of non-osmotic triggers. Symptoms such as nausea/vomiting and pain are significant causes of ADH release. The combination of osmotic and non-osmotic triggers of ADH release can adequately explain the hyponatremia in the majority of people who are hospitalized with acute illness and are found to have mild to moderate hyponatremia. SIADH is less common than appropriate release of ADH. While it should be considered in a differential, other causes should be considered as well.
Cerebral salt wasting syndrome (CSWS) also presents with hyponatremia, there are signs of dehydration for which reason the management is diametrically opposed to SIADH. Importantly CSWS can be associated with subarachnoid hemorrhage (SAH) which may require fluid supplementation rather than restriction to prevent brain damage.
Most cases of hyponatremia in children are caused by appropriate secretion of antidiuretic hormone rather than SIADH or another cause.
Ketoacidosis is a metabolic state associated with high concentrations of ketone bodies, formed by the breakdown of fatty acids and the deamination of amino acids. The two common ketones produced in humans are acetoacetic acid and β-hydroxybutyrate.
Ketoacidosis is a pathological metabolic state marked by extreme and uncontrolled ketosis. In ketoacidosis, the body fails to adequately regulate ketone production causing such a severe accumulation of keto acids that the pH of the blood is substantially decreased. In extreme cases ketoacidosis can be fatal.
Ketoacidosis is most common in untreated type 1 diabetes mellitus, when the liver breaks down fat and proteins in response to a perceived need for respiratory substrate. Prolonged alcoholism may lead to alcoholic ketoacidosis.
Ketoacidosis can be smelled on a person's breath. This is due to acetone, a direct by-product of the spontaneous decomposition of acetoacetic acid. It is often described as smelling like fruit or nail polish remover. Ketosis may also give off an odor, but the odor is usually more subtle due to lower concentrations of acetone.
Treatment consists most simply of correcting blood sugar and insulin levels, which will halt ketone production. If the severity of the case warrants more aggressive measures, intravenous sodium bicarbonate infusion can be given to raise blood pH back to an acceptable range. However, serious caution must be exercised with IV sodium bicarbonate to avoid the risk of equally life-threatening hypernatremia.
Diagnosing adipsia can be difficult as there is no set of concrete physical signs that are adipsia specific. Changes in the brain that are indicative of adipsia include those of hyperpnea, muscle weakness, insomnia, lethargy, and convulsions (although uncommon except in extreme cases of incredibly rapid rehydration). Patients with a history of brain tumors, or congenital malformations, may have hypothalamic lesions, which could be indicative of adipsia. Some adults with Type A adipsia are anorexic in addition to the other symptoms.
Diagnosis is based on clinical and laboratory findings of low serum osmolality and low serum sodium.
Urinalysis reveals a highly concentrated urine with a high fractional excretion of sodium (high sodium urine content compared to the serum sodium).
A suspected diagnosis is based on a serum sodium under 138. A confirmed diagnosis has seven elements: 1) a decreased effective serum osmolality - <275 mOsm/kg of water; 2) urinary sodium concentration high - over 40 mEq/L with adequate dietary salt intake; 3) no recent diuretic usage; 4) no signs of ECF volume depletion or excess; 5) no signs of decreased arterial blood volume - cirrhosis, nehprosis, or congestive heart failure; 6) normal adrenal and thyroid function; and 7) no evidence of hyperglycemia (diabetes mellitus), hypertriglyceridemia, or hyperproteinia (myeloma).
There are nine supplemental features: 1) a low BUN; 2) a low uric acid; 3) a normal creatinine; 4) failure to correct hyponatremia with IV normal saline; 5) successful correction of hyponatremia with fluid restriction; 6) a fractional sodium excretion >1%; 7) a fractional urea excretion >55%; 8) an abnormal water load test; and 9) an elevated plasma AVP.
Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder causing hypertension (high blood pressure) and hypokalemia (abnormally low levels of potassium). It was found by Dr Maria L. New at Weil Cornell Hospital in New York City. It results from mutations in the "HSD11B2" gene, which encodes the kidney isozyme of 11β-hydroxysteroid dehydrogenase type 2. In an unaffected individual, this isozyme inactivates circulating cortisol to the less active metabolite cortisone. The inactivating mutation leads to elevated local concentrations of cortisol in the aldosterone sensitive tissues like the kidney. Cortisol at high concentrations can cross-react and activate the mineralocorticoid receptor due to the non-selectivity of the receptor, leading to aldosterone-like effects in the kidney. This is what causes the hypokalemia, hypertension, and hypernatremia associated with the syndrome. Patients often present with severe hypertension and end-organ changes associated with it like left ventricular hypertrophy, retinal, renal and neurological vascular changes along with growth retardation and failure to thrive. In serum both aldosterone and renin levels are low
Type D is the least commonly diagnosed and researched type of adipsia. The AVP release in this subtype occurs with normally functioning levels of osmoregulation.
To distinguish DI from other causes of excess urination, blood glucose levels, bicarbonate levels, and calcium levels need to be tested. Measurement of blood electrolytes can reveal a high sodium level (hypernatremia as dehydration develops). Urinalysis demonstrates a dilute urine with a low specific gravity. Urine osmolarity and electrolyte levels are typically low.
A fluid deprivation test is another way of distinguishing DI from other causes of excessive urination. If there is no change in fluid loss, giving desmopressin can determine if DI is caused by:
1. a defect in ADH production
2. a defect in the kidneys' response to ADH
This test measures the changes in body weight, urine output, and urine composition when fluids are withheld to induce dehydration. The body's normal response to dehydration is to conserve water by concentrating the urine. Those with DI continue to urinate large amounts of dilute urine in spite of water deprivation. In primary polydipsia, the urine osmolality should increase and stabilize at above 280 Osm/kg with fluid restriction, while a stabilization at a lower level indicates diabetes insipidus. Stabilization in this test means, more specifically, when the increase in urine osmolality is less than 30 Osm/kg per hour for at least three hours. Sometimes measuring blood levels of ADH toward the end of this test is also necessary, but is more time consuming to perform.
To distinguish between the main forms, desmopressin stimulation is also used; desmopressin can be taken by injection, a nasal spray, or a tablet. While taking desmopressin, a patient should drink fluids or water only when thirsty and not at other times, as this can lead to sudden fluid accumulation in the central nervous system. If desmopressin reduces urine output and increases urine osmolarity, the hypothalamic production of ADH is deficient, and the kidney responds normally to exogenous vasopressin (desmopressin). If the DI is due to renal pathology, desmopressin does not change either urine output or osmolarity (since the endogenous vasopressin levels are already high).
Whilst diabetes insipidus usually occurs with polydipsia, it can also rarely occur not only in the absence of polydipsia but in the presence of its opposite, adipsia (or hypodipsia). "Adipsic diabetes insipidus" is recognised as a marked absence of thirst even in response to hyperosmolality. In some cases of adipsic DI, the patient may also fail to respond to desmopressin.
If central DI is suspected, testing of other hormones of the pituitary, as well as magnetic resonance imaging, particularly a pituitary MRI, is necessary to discover if a disease process (such as a prolactinoma, or histiocytosis, syphilis, tuberculosis or other tumor or granuloma) is affecting pituitary function. Most people with this form have either experienced past head trauma or have stopped ADH production for an unknown reason.
Habit drinking (in its severest form termed psychogenic polydipsia) is the most common imitator of diabetes insipidus at all ages. While many adult cases in the medical literature are associated with mental disorders, most patients with habit polydipsia have no other detectable disease. The distinction is made during the water deprivation test, as some degree of urinary concentration above isoosmolar is usually obtained before the patient becomes dehydrated.
This disorder presents similarly to hyperaldosteronism, leading to feedback inhibition of aldosterone. Common symptoms include hypertension, hypokalemia, metabolic alkalosis, and low plasma renin activity.
Three common causes of ketoacidosis are alcohol, starvation, and diabetes, resulting in alcoholic ketoacidosis, starvation ketoacidosis, and diabetic ketoacidosis respectively.
In diabetic ketoacidosis, a high concentration of ketone bodies is usually accompanied by insulin deficiency, hyperglycemia, and dehydration. Particularly in type 1 diabetics the lack of insulin in the bloodstream prevents glucose absorption, thereby inhibiting the production of oxaloacetate through reduced levels of pyruvate, and can cause unchecked ketone body production (through fatty acid metabolism) potentially leading to dangerous glucose and ketone levels in the blood. Hyperglycemia results in glucose overloading the kidneys and spilling into the urine (transport maximum for glucose is exceeded). Dehydration results following the osmotic movement of water into urine (Osmotic diuresis), exacerbating the acidosis.
In alcoholic ketoacidosis, alcohol causes dehydration and blocks the first step of gluconeogenesis by depleting oxaloacetate. The body is unable to synthesize enough glucose to meet its needs, thus creating an energy crisis resulting in fatty acid metabolism, and ketone body formation.
Clinical presentation of CPM is heterogeneous and depend on the regions of the brain involved. Prior to its onset, patients may present with the neurological signs and symptoms of hyponatraemic encephalopathy such as nausea and vomiting, confusion, headache and seizures. These symptoms may resolve with normalisation of the serum sodium concentration. Three to five days later, a second phase of neurological manifestations occurs correlating with the onset of myelinolysis. Observable immediate precursors may include seizures, disturbed consciousness, gait changes, and decrease or cessation of respiratory function.
The classical clinical presentation is the progressive development of spastic quadriparesis, pseudobulbar palsy, and emotional lability (pseudobulbar affect), with other more variable neurological features associated with brainstem damage. These result from a rapid myelinolysis of the corticobulbar and corticospinal tracts in the brainstem.
The most common cause of is overly rapid correction of low blood sodium levels (hyponatremia). Apart from rapid correction of hyponatraemia, there are case reports of central pontine myelinolysis in association with hypokalaemia, anorexia nervosa when feeding is started, patients undergoing dialysis and burns victims. There is a case report of central pontine myelinolysis occurring in the context of re-feeding syndrome, in the absence of hyponatremia.
It has also been known to occur in patients suffering withdrawal symptoms of chronic alcoholism. In these instances, occurrence may be entirely unrelated to hyponatremia or rapid correction of hyponatremia. It could affect patients who take some prescription medicines that are able to cross the blood-brain barrier and cause abnormal thirst reception - in this scenario the CPM is caused by polydipsia leading to low blood sodium levels (hyponatremia).
In schizophrenic patients with psychogenic polydipsia, inadequate thirst reception leads to excessive water intake, severely diluting serum sodium. With this excessive thirst combined with psychotic symptoms, brain damage such as CPM may result from hyperosmolarity caused by excess intake of fluids, (primary polydipsia) although this is difficult to determine because such patients are often institutionalised and have a long history of mental health conditions.
It has been observed following hematopoietic stem cell transplantation.
CPM may also occur in patients prone to hyponatraemia affected by
- severe liver disease
- liver transplant
- alcoholism
- severe burns
- malnutrition
- anorexia
- severe electrolyte disorders
- AIDS
- hyperemesis gravidarum
- hyponatremia due to Peritoneal Dialysis
- Wernicke encephalopathy
Deficiency of all anterior pituitary hormones is more common than individual hormone deficiency.
Deficiency of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), together referred to as the gonadotropins, leads to different symptoms in men and women. Women experience oligo- or amenorrhea (infrequent/light or absent menstrual periods respectively) and infertility. Men lose facial, scrotal and trunk hair, as well as suffering decreased muscle mass and anemia. Both sexes may experience a decrease in libido and loss of sexual function, and have an increased risk of osteoporosis (bone fragility). Lack of LH/FSH in children is associated with delayed puberty.
Growth hormone (GH) deficiency leads to a decrease in muscle mass, central obesity (increase in body fat around the waist) and impaired attention and memory. Children experience growth retardation and short stature.
Adrenocorticotropic hormone (ACTH) deficiency leads to adrenal insufficiency, a lack of production of glucocorticoids such as cortisol by the adrenal gland. If the problem is chronic, symptoms consist of fatigue, weight loss, failure to thrive (in children), delayed puberty (in adolescents), hypoglycemia (low blood sugar levels), anemia and hyponatremia (low sodium levels). If the onset is abrupt, collapse, shock and vomiting may occur. ACTH deficiency is highly similar to primary Addison's disease, which is cortisol deficiency as the result of direct damage to the adrenal glands; the latter form, however, often leads to hyperpigmentation of the skin, which does not occur in ACTH deficiency.
Thyroid-stimulating hormone (TSH) deficiency leads to hypothyroidism (lack of production of thyroxine (T4) and triiodothyronine (T3) in the thyroid). Typical symptoms are tiredness, intolerance to cold, constipation, weight gain, hair loss and slowed thinking, as well as a slowed heart rate and low blood pressure. In children, hypothyroidism leads to delayed growth and in extreme inborn forms to a syndrome called "cretinism".
Prolactin (PRL) plays a role in breastfeeding, and inability to breastfeed may point at abnormally low prolactin levels.
The hormones of the pituitary have different actions in the body, and the symptoms of hypopituitarism therefore depend on which hormone is deficient. The symptoms may be subtle and are often initially attributed to other causes. In most of the cases, three or more hormones are deficient. The most common problem is insufficiency of follicle-stimulating hormone (FSH) and/or luteinizing hormone (LH) leading to sex hormone abnormalities. Growth hormone deficiency is more common in people with an underlying tumor than those with other causes.
Sometimes, there are additional symptoms that arise from the underlying cause; for instance, if the hypopituitarism is due to a growth hormone-producing tumor, there may be symptoms of acromegaly (enlargement of the hands and feet, coarse facial features), and if the tumor extends to the optic nerve or optic chiasm, there may be visual field defects. Headaches may also accompany pituitary tumors, as well as pituitary apoplexy (infarction or haemorrhage of a pituitary tumor) and lymphocytic hypophysitis (autoimmune inflammation of the pituitary). Apoplexy, in addition to sudden headaches and rapidly worsening visual loss, may also be associated with double vision that results from compression of the nerves in the adjacent cavernous sinus that control the eye muscles.
Pituitary failure results in many changes in the skin, hair and nails as a result of the absence of pituitary hormone action on these sites.
The variable presentation of ROHHAD includes the following main symptoms:
- Hyperphagia and obesity by age of 10 years - (median age 3 years);
- Respiratory Manifestations:
- Alveolar Hypoventilation (median onset age 6.2 years);
- Cardiorespiratory arrest;
- Reduced Carbon Dioxide Ventilatory Response;
- Obstructive sleep apnea.
- Thermal or other hypothalamic dysregulations, with autonomic dysregulation by median age 3.6 years:
- Failed Growth Hormone Stimulation;
- Adipsic hypernatremia (inability to feel thirst to keep normal hydration);
- Hypernatremia;
- Hyperprolactinemia;
- Hyperphagia;
- Diabetes insipidus;
- Ophthalmologic Manifestations;
- Thermal Dysregulation;
- Gastrointestinal dysmotility;
- Altered Perception of Pain;
- Altered Sweating;
- Cold Hands and Feet.
- Neurobehavioral disorders;
- Tumors of neural crest origin.
Clinically overlapping cases exist because CCHS phenotype can also include autonomic nervous system dysregulation, or tumors of neural crest origin.
Currently there are no official tests or treatments for ROHHAD. Each child has the symptoms above at different ages, yet most symptoms are eventually present. Many children are misdiagnosed or are never diagnosed until alveolar hypoventilation occurs.
Fluoride toxicity is a condition in which there are elevated levels of the fluoride ion in the body. Although fluoride is safe for dental health at low concentrations, sustained consumption of large amounts of soluble fluoride salts is dangerous. Referring to a common salt of fluoride, sodium fluoride (NaF), the lethal dose for most adult humans is estimated at 5 to 10 g (which is equivalent to 32 to 64 mg/kg elemental fluoride/kg body weight). Ingestion of fluoride can produce gastrointestinal discomfort at doses at least 15 to 20 times lower (0.2–0.3 mg/kg or 10 to 15 mg for a 50 kg person) than lethal doses. Although it is helpful for dental health in low dosage, chronic exposure to fluoride in large amounts interferes with bone formation. In this way, the most widespread examples of fluoride poisoning arise from consumption of ground water that is abnormally fluoride-rich.
Most PVS patients are unresponsive to external stimuli and their conditions are associated with different levels of consciousness. Some level of consciousness means a person can still respond, in varying degrees, to stimulation. A person in a coma, however, cannot. In addition, PVS patients often open their eyes in response to feeding, which has to be done by others; they are capable of swallowing, whereas patients in a coma subsist with their eyes closed (Emmett, 1989).
PVS patients' eyes might be in a relatively fixed position, or track moving objects, or move in a "disconjugate" (i.e., completely unsynchronized) manner. They may experience sleep-wake cycles, or be in a state of chronic wakefulness. They may exhibit some behaviors that can be construed as arising from partial consciousness, such as grinding their teeth, swallowing, smiling, shedding tears, grunting, moaning, or screaming without any apparent external stimulus.
Individuals in PVS are seldom on any life-sustaining equipment other than a feeding tube because the brainstem, the center of vegetative functions (such as heart rate and rhythm, respiration, and gastrointestinal activity) is relatively intact (Emmett, 1989).
The vegetative state is a chronic or long-term condition. This condition differs from a coma: a coma is a state that lacks both awareness and wakefulness. Patients in a vegetative state may have awoken from a coma, but still have not regained awareness. In the vegetative state patients can open their eyelids occasionally and demonstrate sleep-wake cycles, but completely lack cognitive function. The vegetative state is also called a "coma vigil". The chances of regaining awareness diminish considerably as the time spent in the vegetative state increases.
Fluoride induced nephrotoxicity is kidney injury due to toxic levels of serum fluoride, commonly due to release of fluoride from fluorine-containing drugs, such as methoxyflurane.
Within the recommended dose, no effects are expected, but chronic ingestion in excess of 12 mg/day are expected to cause adverse effects, and an intake that high is possible when fluoride levels are around 4 mg/L. Those with impaired kidney function are more susceptible to adverse effects.
The kidney injury is characterised by failure to concentrate urine, leading to polyuria, and subsequent dehydration with hypernatremia and hyperosmolarity. Inorganic fluoride inhibits adenylate cyclase activity required for antidiuretic hormone effect on the distal convoluted tubule of the kidney. Fluoride also stimulates intrarenal vasodilation, leading to increased medullary blood flow, which interferes with the counter current mechanism in the kidney required for concentration of urine.
Fluoride induced nephrotoxicity is dose dependent, typically requiring serum fluoride levels exceeding 50 micromoles per liter (about 1 ppm) to cause clinically significant renal dysfunction, which is likely when the dose of methoxyflurane exceeds 2.5 MAC hours. (Note: "MAC hour" is the multiple of the minimum alveolar concentration (MAC) of the anesthetic used times the number of hours the drug is administered, a measure of the dosage of inhaled anesthetics.)
Elimination of fluoride depends on glomerular filtration rate. Thus, patients with renal insufficiency will maintain serum fluoride for longer period of time, leading to increased risk of fluoride induced nephrotoxicity.
There are several terms which were in general use, but are no longer recommended.