Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
HIES often appears early in life with recurrent staphylococcal and candidal infections, pneumonias, and eczematoid skin.
- Autosomal dominant Hyper-IgE Syndrome caused by STAT3 defects, called Job Syndrome, have characteristic facial, dental, and skeletal abnormalities. Patients with STAT3 HIES may have either delay of or failure in shedding of primary teeth. The characteristic facial features are usually set by age 16. These include facial asymmetry, a prominent forehead, deep-set eyes, a broad nasal bridge, a wide, fleshy nasal tip, and mild prognathism. Additionally, facial skin is rough with prominent pores. Finally, some patients with STAT3 HIES have scoliosis, as well as bones that fracture easily.
- Autosomal recessive
The signs and symptoms of DOCK8 deficiency are similar to the autosomal dominant form, STAT3 deficiency. However, in DOCK8 deficiency, there is no skeletal or connective tissue involvement, and affected individuals do not have the characteristic facial features of those with autosomal dominant hyper-IgE syndrome. DOCK8 deficient children often have eczema, respiratory and skin staphylococcus infections.
Beyond these, many other recurrent infections have been observed, including recurrent fungal infections and recurrent viral infections (including molluscum contagiosum, herpes simplex, and herpes zoster), recurrent upper respiratory infection (including "Streptococcus pneumoniae", "Haemophilus influenzae", respiratory syncytial virus, and adenovirus), recurrent sinusitis, recurrent otitis media, mastoiditis, pneumonia, bronchitis with bronchiectasis, osteomyelitis, candidiasis, meningitis (caused by cryptococcus or H. influenzae), pericarditis, salmonella enteritis, and giardiasis. Other dermatologic problems include squamous-cell carcinoma/dysplasia (vulvar, anal, and facial). Immune problems are also common, including autoimmune hemolytic anemia, severe allergies (both food and environmental), asthma, and reactive airway disease. The nervous system may also be affected; observed conditions in DOCK8 deficient people include hemiplegia, ischemic stroke, subarachnoid hemorrhage, and facial paralysis. Vascular complications are common, including aortic aneurysm, cerebral aneurysm, vessel occlusion and underperfusion, and leukocytoclastic vasculitis.
Elevated IgE is the hallmark of HIES. An IgE level greater than 2,000 IU/mL is often considered diagnostic. However, patients younger than 6 months of age may have very low to non-detectable IgE levels. Eosinophilia is also a common finding with greater than 90% of patients having eosinophil elevations greater than two standard deviations above the normal mean. Genetic testing is available for "STAT3" (Job's Syndrome), "DOCK8 (DOCK8 Immunodeficiency or DIDS)", "PGM3" (PGM3 deficiency), "SPINK5" (Netherton Syndrome - NTS), and "TYK2" genetic defects.
A diagnosis can only be definitively made after genetic testing to look for a mutation in the "DOCK8" gene. However, it can be suspected with a high IgE level and eosinophilia. Other suggestive laboratory findings include decreased numbers of B cells, T cells, and NK cells; and hypergammaglobulinemia. It can be distinguished from autosomal dominant hyper-IgE (STAT3 deficiency) because people with DOCK8 deficiency have low levels of IgM and an impaired secondary immune response. IgG and IgA levels are usually normal to high. It can be distinguished from the similar X-linked Wiskott–Aldrich syndrome by the presence of thrombocytopenia and the consequent bloody diarrhea, as well as its pattern of inheritance. WHIM syndrome, caused by a mutation in CXCR4, is associated with similar chronic cutaneous viral infections.
The symptoms are very similar to graft-versus-host disease (GVHD). This is because the patients have some T cells with limited levels of recombination with the mutant RAG genes. These T cells are abnormal and have a very specific affinity for self antigens found in the thymus and in the periphery. Therefore, these T cells are auto-reactive and cause the GVHD phenotype.
A characteristic symptom is chronic inflammation of the skin, which appears as a red rash (early onset erythroderma). Other symptoms include eosinophilia, failure to thrive, swollen lymph nodes, swollen spleen, diarrhea, enlarged liver, low immunoglobulin levels (except immunoglobulin E, which is elevated), low T cell levels, and no B cells.
Among the presentation consistent with hyper IgM syndrome are the following:
- Infection/"Pneumocystis" pneumonia (PCP), which is common in infants with hyper IgM syndrome, is a serious illness. PCP is one of the most frequent and severe opportunistic infections in people with weakened immune systems. Many CD40 Ligand Deficiency are first diagnosed after having PCP in their first year of life. The fungus is common and is present in over 70% of healthy people’s lungs, however, Hyper IgM patients are not able to fight it off without the administration of Bactrim)
- Hepatitis (Hepatitis C)
- Chronic diarrhea
- Hypothyroidism
- Neutropenia
- Arthritis
- Encephalopathy (degenerative)
Omenn syndrome is an autosomal recessive severe combined immunodeficiency associated with hypomorphic missense mutations in immunologically relevant genes of T-cells (and B-cells) such as recombination activating genes (RAG1 and RAG2), IL-7 Receptor α gene (IL7Rα), DCLRE1C-Artemis, RMRP-CHH, DNA-Ligase IV, common gamma chain, WHN-FOXN1, ZAP-70 and complete DiGeorge anomaly (DiGeorge Syndrome; CHARGE).
The disorder is characterized by:
- severe salt-independent but age-dependent hypertension
- brachydactyly malformations of the hands and fingers
- increased fibroblast growth rate
- neurovascular contact at the rostral-ventrolateral medulla
- altered baroreflex blood pressure regulation
- death from stroke before age 50 years when untreated
The age of onset is almost always before 3 months of age. Many infants are born preterm (1/3 cases) and dysmature. The babies are frequently small for dates. The placenta may be abnormal with non-specific inflammation on histology. Umbilical cord anomalies have occasionally been reported. In severe cases, signs in the brain may be detected on prenatal ultrasound.
The presentation is pleiomorphic, making the diagnosis difficult, but the most common features of this disease involve the skin, joints, and central nervous system.
All have a maculopapular urticarial skin rash that is often present at birth (75% cases). It is probably more correctly described as an urticarial-like rash. The presence of the rash varies with time, and biopsy of these skin lesions shows a perivascular inflammatory infiltrate including granulocytes.
In about 35-65% of cases, arthritis occurs. Joint signs are variably expressed and can lead to transient swelling without sequelae between crises, or to unpredictable anomalies of growth cartilage and long bones epiphyses suggestive of a pseudo-tumour. Biopsies reveal hypertrophic cartilage without inflammatory cells. This most commonly affects the large joints (knees, ankles, elbows, and wrists) but may also involve the small joints of the hands and feet. It is usually bilateral and painful. A common and characteristic feature is giant kneecaps. Severe cases may result in contractures (joint deformities).
Most patients eventually have neurological problems. These manifest themselves in three principal ways: chronic meningitis, involvement of both the optic tract and eye, and sensorineural hearing loss. The chronic meningitis presents with the features of chronically raised intracranial pressure: headaches, vomiting, ventriculomegaly, hydrocephalus, macromegaly, cerebral atrophy, and optic atrophy. Some of these features may be evidenced on prenatal ultrasound. In 50% of cases, intellectual deficit occurs. Seizures occur in 25% of cases, but other manifestations are rare. Histological examination shows infiltration of the meninges with polymorphs.
Ocular manifestations occur in 80% of cases and include uveitis (70%), papillary involvement, conjunctivitis, and optical neuritis. If untreated, these may result in blindness (25%). The sensorineural hearing loss occurs in 75%, and tends to be progressive leading to deafness in 20% of cases.
Almost all children are remarkably short and have growth delay. Fever is extremely common but inconstant and is most often mild. Anemia is frequent. Other findings that have been reported include macrocephaly (95%), large fontanelle, prominent forehead, flattening of the nasal bridge (saddleback nose), short and thick extremities, and finger clubbing. The liver and/or spleen may be enlarged. Lymph node enlargement may also be present.
Later in life, secondary amyloidosis may occur. Delayed puberty and secondary amenorrhoea are not uncommon. Hoarseness due to inflammation of the laryngeal cartilage has also been reported.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
Hypertension and brachydactyly syndrome (HTNB) also known as Bilginturan syndrome and brachydactyly type E among others is a very rare genetic disorder.
It was first reported in 1973 by N. Bilginturan et al. The estimated prevalence is less than 1 out of 1,000,000.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
Still's disease does not affect children under 6 months old.
Hyperimmunoglobulin D syndrome in 50% of cases is associated with mevalonate kinase deficiency which can be measured in the leukocytes.
The severity of the disorder can vary within the same family, with symptoms ranging from so mild as to go unnoticed to severe heart and/or liver disease requiring transplantation. It is difficult to predict a given patient's prognosis, but there are a few known indicators of earlier death.
Signs and symptoms arising from liver damage in Alagille syndrome may include a yellowish tinge in the skin and the whites of the eyes (jaundice), itching (pruritus), pale stools (acholia), an enlarged liver (hepatomegaly), an enlarged spleen (splenomegaly) and deposits of cholesterol in the skin (xanthomas). A liver biopsy may indicate too few bile ducts (bile duct paucity) or, in some cases, the complete absence of bile ducts (biliary atresia). Bile duct paucity results in the reduced absorption of fat and vitamins (A, D, E and K), which may lead to rickets or a failure to thrive in children. Around 15% of patients will experience liver cirrhosis in the course of their disease. Hepatocellular cancer has been reported in a number of cases.
Nijmegen breakage syndrome (NBS), also known as Berlin breakage syndrome, ataxia telangiectasia variant 1 (AT-V1) and Seemanova syndrome, is a rare autosomal recessive congenital disorder causing chromosomal instability, probably as a result of a defect in the double Holliday junction DNA repair mechanism and/or the synthesis dependent strand annealing mechanism for repairing double strand breaks in DNA (see Homologous recombination).
NBS1 codes for a protein (nibrin) that has two major functions: (1) to stop the cell cycle in the S phase, when there are errors in the cell DNA (2) to interact with FANCD2 that can activate the BRCA1/BRCA2 pathway of DNA repair. This explains why mutations in the NBS1 gene lead to higher levels of cancer (see Fanconi anemia, Cockayne syndrome.)
The name derives from the Dutch city Nijmegen where the condition was first described.
Most people with NBS have West Slavic origins. The largest number of them live in Poland.
Zellweger syndrome is one of three peroxisome biogenesis disorders which belong to the Zellweger spectrum of peroxisome biogenesis disorders (PBD-ZSD). The other two disorders are neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). Although all have a similar molecular basis for disease, Zellweger syndrome is the most severe of these three disorders.
Zellweger syndrome is associated with impaired neuronal migration, neuronal positioning, and brain development. In addition, individuals with Zellweger syndrome can show a reduction in central nervous system (CNS) myelin (particularly cerebral), which is referred to as hypomyelination. Myelin is critical for normal CNS functions, and in this regard, serves to insulate nerve fibers in the brain. Patients can also show postdevelopmental sensorineuronal degeneration that leads to a progressive loss of hearing and vision.
Zellweger syndrome can also affect the function of many other organ systems. Patients can show craniofacial abnormalities (such as a high forehead, hypoplastic supraorbital ridges, epicanthal folds, midface hypoplasia, and a large fontanel), hepatomegaly (enlarged liver), chondrodysplasia punctata (punctate calcification of the cartilage in specific regions of the body), eye abnormalities, and renal cysts. Newborns may present with profound hypotonia (low muscle tone), seizures, apnea, and an inability to eat.
CLOVES syndrome is an extremely rare overgrowth syndrome, with complex vascular anomalies. CLOVES syndrome affects people with various symptoms, ranging from mild fatty soft-tissue tumors to vascular malformations encompassing the spine or internal organs. CLOVES syndrome is closely linked to other overgrowth disorders like proteus syndrome, Klippel–Trénaunay syndrome, Sturge–Weber syndrome, and hemihypertrophy, to name a few.
'CLOVES' is an acronym for:
- C is for congenital.
- L is for lipomatous, which means pertaining to or resembling a benign tumor made up of mature fat cells. Most CLOVES patients present with a soft fatty mass at birth, often visible on one or both sides of the back, legs and/or abdomen.
- O is for overgrowth, because there is an abnormal increase in the size of the body or a body part that is often noted at birth. Patients with CLOVES may have affected areas of their bodies that grow faster than in other people. Overgrowth of extremities (usually arms or legs) is seen, with large wide hands or feet, large fingers or toes, wide space between fingers, and asymmetry of body parts.
- V is for vascular malformations, which are blood vessel abnormalies. Patients with CLOVES have different venous, capillary, and lymphatic channels - typically capillary, venous and lymphatic malformations are known as "slow flow" lesions. Some patients with CLOVES have combined lesions (which are fast flow) and some have aggressive vascular malformation known as arteriovenous malformations (AVM). The effect of a vascular malformation varies per patient based on the type, size, and location of the malformation, and symptoms can vary.
- E is for Epidermal naevi, which are sharply-circumscribed chronic lesions of the skin, and benign. These are often flesh-colored, raised or warty.
- S is for Spinal/Skeletal Anomalies or scoliosis. Some patients with CLOVES have tethered spinal cord, vascular malformations in or around their spines, and other spinal differences. High-flow aggressive spinal lesions (like AVM) can cause serious neurological deficits/paralysis.
The syndrome was first recognised by Saap and colleagues who recognised the spectrum of symptoms from a set of seven patients. In this initial description the syndrome is named CLOVE syndrome. It is believed that the first description of a case of CLOVES syndrome was written by Hermann Friedberg, a German physician, in 1867.
With so few described cases, establishing the basic pathophysiological mechanisms or genetic abnormalities has not been possible.
An autoimmune disease is a condition arising from an abnormal immune response to a normal body part. There are at least 80 types of autoimmune diseases. Nearly any body part can be involved. Common symptoms include low grade fever and feeling tired. Often symptoms come and go.
Fitzsimmons–Guilbert syndrome is an extremely rare genetic disease characterized by a slowly progressive spastic paraplegia, skeletal anomalies of the hands and feet with brachydactyly type E, cone-shaped epiphyses, abnormal metaphyseal–phalangeal pattern profile, sternal anomaly (pectus carinatum or excavatum), dysarthria, and mild intellectual deficit.
Familial Isolated Vitamin E Deficiency also known as Ataxia With Vitamin E Deficiency is a rare autosomal recessive neurodegenerative disease. Symptoms are similar to those of Friedreich ataxia.
A symptom complex characterised by the clinical features of a high intermittent fever of septic type, constantly recurring exanthema, transient arthralgia, carditis, pleurisy, neutrophil leukocytosis, and increased erythrocyte sedimentation rate.
Familial Isolated Vitamin E Deficiency is caused by mutations in the gene for a-tocopherol transfer protein.