Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of holoprosencephaly range from mild (no facial/organ defects, anosmia, or only a single central incisor) to moderate to severe (cyclopia).
There are four classifications of holoprosencephaly.
- Alobar holoprosencephaly, the most serious form, in which the brain fails to separate, is usually associated with severe facial anomalies, including lack of a nose and the eyes merged to a single median structure, see Cyclopia
- Semilobar holoprosencephaly, in which the brain's hemispheres have somewhat divided, is an intermediate form of the disease.
- Lobar holoprosencephaly, in which there is considerable evidence of separate brain hemispheres, is the least severe form. In some cases of lobar holoprosencephaly, the patient's brain may be nearly normal.
- Syntelencephaly, or middle interhemispheric variant of holoprosencephaly (MIHV), in which the posterior frontal lobe and the parietal lobe are not properly separated, but the rostrobasal forebrain properly separates; it is possible that this is not a variant of HPE at all, but is currently classified as such.
- Agenesis of the corpus callosum, in which there is a complete or partial absence of the corpus callosum. It occurs when the corpus callosum, the band of white matter connecting the two hemispheres in the brain, fails to develop normally, typically during pregnancy. The fibers that would otherwise form the corpus callosum become longitudinally oriented within each hemisphere and form structures called Probst bundles.
Holoprosencephaly consists of a spectrum of defects or malformations of the brain and face. At the most severe end of this spectrum are cases involving serious malformations of the brain, malformations so severe that they often cause miscarriage or stillbirth. At the other end of the spectrum are individuals with facial defects which may affect the eyes, nose, and upper lip - and normal or near-normal brain development. Seizures and mental retardation may occur.
The most severe of the facial defects (or anomalies) is cyclopia, an abnormality characterized by the development of a single eye, located in the area normally occupied by the root of the nose, and a missing nose or a nose in the form of a proboscis (a tubular appendage) located above the eye. The condition is also referred to as cyclocephaly or synophthalmia, and is very rare.
Affected newborns generally have striking neurological defects and seizures. Severely impaired development is common, but disturbances in motor functions may not appear until later in life.
Infants with microcephaly are born with either a normal or reduced head size. Subsequently, the head fails to grow, while the face continues to develop at a normal rate, producing a child with a small head and a receding forehead, and a loose, often wrinkled scalp. As the child grows older, the smallness of the skull becomes more obvious, although the entire body also is often underweight and dwarfed. Development of motor functions and speech may be delayed. Hyperactivity and intellectual disability are common occurrences, although the degree of each varies. Convulsions may also occur. Motor ability varies, ranging from in some to spastic quadriplegia in others.
Holoprosencephaly (HPE) is a cephalic disorder in which the prosencephalon (the forebrain of the embryo) fails to develop into two hemispheres. Normally, the forebrain is formed and the face begins to develop in the fifth and sixth weeks of human pregnancy. The condition also occurs in other species.
The condition can be mild or severe. According to the National Institute of Neurological Disorders and Stroke (NINDS), "in most cases of holoprosencephaly, the malformations are so severe that babies die before birth."
When the embryo's forebrain does not divide to form bilateral cerebral hemispheres (the left and right halves of the brain), it causes defects in the development of the face and in brain structure and function.
In less severe cases, babies are born with normal or near-normal brain development and facial deformities that may affect the eyes, nose, and upper lip.
Microcephaly is a type of cephalic disorder. It has been classified in two types based on the onset:
In some children without “classic” holoprosencephaly, microforms of holoprosencephaly may be noted on MRI, including missing olfactory tracts and bulbs and absent or hypoplastic corpus callosum.
Cognitive ability in individuals with 18p- varies widely, with most falling in the mild to moderate range of impairment, though there have been some reports of people with impairment in the severe to profound range. These individuals may have had holoprosencephaly, which is frequently associated with severe impairment.
Speech deficits are quite common within this population. Frequently, expressive speech lags behind other developmental parameters.
Many organ systems are affected by triploidy, but the central nervous system and skeleton are the most severely affected. Common central nervous system defects seen in triploidy include holoprosencephaly, hydrocephalus (increased amount of cerebrospinal fluid within the brain), ventriculomegaly, Arnold-Chiari malformation, agenesis of the corpus callosum, and neural tube defects. Skeletal manifestations include cleft lip/palate, hypertelorism, club foot, and syndactyly of fingers three and four. Congenital heart defects, hydronephrosis, omphalocele, and meningocele (spina bifida) are also common. Cystic hygromas occur but are uncommon. Triploid fetuses have intrauterine growth restriction beginning early in the pregnancy, as early as 12 weeks, and does not affect the head as severely as the body. Oligohydramnios, low levels of amniotic fluid, is common in triploid pregnancies.
Placental abnormalities are common in triploidy. Most frequently, the placenta is enlarged and may have cysts within. In some cases, the placenta may be unusually small, having ceased to grow.
Ring 18 causes a wide range of medical and developmental concerns. As discussed above, people with ring 18 can have features of both distal 18q- and 18p-. The features of distal 18q- and 18p- vary greatly because of the variability of the deletion size and breakpoint locations between people. Because ring 18 can involve unique deletions of both the p and q arms of the chromosome there is twice as much reason for the variability between individuals. This variation is also partly attributable to the incidence of mosaicism, which is relatively common in people with ring 18.
- Holoprosencephaly has been reported in some people with ring 18. This is due to the deletion of the TGIF gene on the short arm of chromosome 18 in some people with ring 18.Approximately 30-40% of people with ring 18 have a congenital heart anomaly. Septal defects are the most common type of defect reported in this population.
- Hypotonia is frequently seen in the ring 18 population. Seizures, though uncommon, have been reported in people with ring 18.
- In some children without “classic” holoprosencephaly, microforms of holoprosencephaly may be noted on MRI, including missing olfactory tracts and bulbs and absent or hypoplastic corpus callosum.
- Strabismus as well as nystagmus have both been reported in infants and children with ring 18.
- Hearing loss has been reported and may be related to ear canal atresia or stenosis.
- Umbilical and inguinal hernias have been reported in a small number of people with ring 18.
- Unilateral renal hypoplasia and aplasia have both been reported in individuals with ring 18. Hydronephrosis as well as pyelonephritis have also been reported in a few individuals. Cryptorchidism, hypospadias, and micropenis have been seen in males with ring 18, while females have been reported with hypoplastic labia.
- Foot abnormalities are common within the ring 18 population. Scoliosis as well as pectus excavatum have also been frequently reported.
- Several people with ring 18 have growth hormone deficiency. Hypothyroidism has also been reported in a minority of people.
- Cognitive ability varies; according to a literature review, the degree of impairment may fall anywhere between the mild and severe ends of the spectrum.
- Facial features of ring 18 include low-set, dysplastic ears, epicanthic folds, and hypertelorism. Micrognathia has also been reported.
Of those fetuses that do survive to gestation and subsequent birth, common abnormalities may include:
- Nervous system
- Intellectual disability and motor disorder
- Microcephaly
- Holoprosencephaly (failure of the forebrain to divide properly).
- Structural eye defects, including microphthalmia, Peters' anomaly, cataract, iris or fundus (coloboma), retinal dysplasia or retinal detachment, sensory nystagmus, cortical visual loss, and optic nerve hypoplasia
- Meningomyelocele (a spinal defect)
- Musculoskeletal and cutaneous
- Polydactyly (extra digits)
- Cyclopia
- Proboscis
- Congenital trigger digits
- Low-set ears
- Prominent heel
- Deformed feet known as rocker-bottom feet
- Omphalocele (abdominal defect)
- Abnormal palm pattern
- Overlapping of fingers over thumb
- Cutis aplasia (missing portion of the skin/hair)
- Cleft palate
- Urogenital
- Abnormal genitalia
- Kidney defects
- Other
- Heart defects (ventricular septal defect) (Patent Ductus Arteriosus)
- Dextrocardia
- Single umbilical artery
Additional symptoms include:
- anencephaly (failure of major sections of the brain to form)
- encephalocele (cranial contents protrudes from the skull)
- cyclopia (the two eye cavities fuse into one)
- agnathia
- cleft palate
- arthrogryposis
- clubfeet
- holoprosencephaly
- spina bifida
- low-set ears
- pulmonary hypoplasia
- omphalocele
- gastroschisis
- cardiovascular disorders
- diaphragmatic hernias
- gastrointestinal atresia
- single umbilical artery
- renal abnormalities
- genu recurvatum
- hydramnios
The optic nerve hypoplasia is generally manifested by nystagmus (involuntary eye movements, often side-to-side) and a smaller-than-usual optic disc. The degree of visual impairment is variable, and ranges from normal vision to complete blindness. When nystagmus develops, it typically appears by 1–8 months of age, and usually indicates that there will be a significant degree of visual impairment, but the severity is difficult to predict in infancy. Although there are many measures to compensate for visual impairment, there are few treatments available to induce normal optic nerve function.
Cerebellar agenesis is a rare condition in which a brain develops without the cerebellum. The cerebellum controls smooth movement, and when it does not develop, the rest of the brain must compensate, which it cannot do completely. The condition is not fatal on its own, but people born without a cerebellum experience severe developmental delays, language deficits, and neurological abnormalities. As children with cerebellar agenesis get older, their movements usually improve. It can co-exist with other severe malformations of the central nervous system, like anencephaly, holoprosencephaly, and microencephaly.
The condition was first reported in 1831. 10 cases had been reported as of 1998. Agenesis of one half or another part of the cerebellum is more common than complete agenesis.
Cerebellar agenesis can be caused by mutations in the PTF1A gene.
Ethmocephaly is a type of cephalic disorder caused by holoprosencephaly. Ethmocephaly is the least common facial anomaly. It consists of a proboscis separating narrow-set eyes with an absent nose and microphthalmia (abnormal smallness of one or both eyes). Cebocephaly, another facial anomaly, is characterized by a small, flattened nose with a single nostril situated below incomplete or underdeveloped closely set eyes.
The least severe in the spectrum of facial anomalies is the median cleft lip, also called premaxillary agenesis.
Although the causes of most cases of holoprosencephaly remain unknown, some may be due to dominant or chromosome causes. Such chromosomal anomalies as trisomy 13 and trisomy 18 have been found in association with holoprosencephaly, or other neural tube defects. Genetic counseling and genetic testing, such as amniocentesis, is usually offered during a pregnancy if holoprosencephaly is detected. The recurrence risk depends on the underlying cause. If no cause is identified and the fetal chromosomes are normal, the chance to have another pregnancy affected with holoprosencephaly is about 6%.
There is no treatment for holoprosencephaly and the prognosis for individuals with the disorder is poor. Most of those who survive show no significant developmental gains. For children who survive, treatment is symptomatic. It is possible that improved management of diabetic pregnancies may help prevent holoprosencephaly, however there is no means of primary prevention.
Ring 18 is a genetic condition caused by a deletion of the two tips of chromosome 18 followed by the formation of a ring-shaped chromosome. It was first reported in 1964.
The affected infant tends to be short, with a disproportionately large head. The fetal head of Infants born with iniencephaly are hyperextended while the foramen magnum is enlarged and opens through the widened pedicles. The defective neural arches directly into the upper cervical reach of the spinal canal, causing the formation of a common cavity between most of the spinal cord and the brain. The skin of the anterior chest is connected directly to the face, bypassing the formation of a neck, while the scalp is directly connected to the skin of the back. Because of this, those born with this anomaly either have a highly shortened neck or no neck at all. This causes extreme retroflexion, or backward bending, of the head in a "star-gazing" fashion. The spine is severely distorted as well along with significant shortening due to marked lordosis. The vertebrae, especially cervical, are fused together in abnormal shapes and their numbers are reduced. The spinal cord is almost always defective while the ventricular system is often dilated and the cortex is thinned. Sometimes, in the case of iniencephaly apertus, an encephalocele (sac-like protrusions of the brain through an opening in the cranium) forms.
13q deletion syndrome is a rare genetic disease caused by the deletion of some or all of the large arm of human chromosome 13. It causes intellectual disability and congenital malformations that affect a variety of organ systems.
Triploid syndrome, also called triploidy, is an extremely rare chromosomal disorder, in which a fetus has three copies of every chromosome instead of the normal two. If this occurs in only some cells, it is called mosaic triploidy, and is less severe.
Usually the cerebellum and brain stem are formed normally, although in some cases the cerebellum may also be absent. An infant with hydranencephaly may appear normal at birth or may have some distortion of the skull and upper facial features due to fluid pressure inside the skull. The infant's head size and spontaneous reflexes such as sucking, swallowing, crying, and moving the arms and legs may all seem normal, depending on the severity of the condition. However, after a few weeks the infant sometimes becomes irritable and has increased muscle tone (hypertonia). After several months of life, seizures and hydrocephalus may develop, if they did not exist at birth. Other symptoms may include visual impairment, lack of growth, deafness, blindness, spastic quadriparesis (paralysis), and intellectual deficits.
Some infants may have additional abnormalities at birth including seizures, myoclonus (involuntary sudden, rapid jerks), limited thermoregulation abilities, and respiratory problems.
Still other infants display no obvious symptoms at birth, going many months without a confirmed diagnosis of hydranencephaly. In some cases a severe hydrocephalus, or other cephalic condition, is misdiagnosed.
Different areas of deletion are associated with different symptoms. Deletions from the centromere to 13q32 or any deletions including the 13q32 band are associated with slow growth, intellectual disability, and congenital malformations. Deletions from 13q33 to the end of the chromosome are associated with intellectual disability. Intellectual disabilities range from very mild to very severe, and can co-occur with behavioral disorders and/or autism spectrum disorders.
At birth, the main symptoms include low weight (due to intrauterine growth restriction), hypotonia, and feeding difficulties. Infants may also have cleft palate.
13q deletion syndrome gives a characteristic appearance to affected individuals, potentially including microphthalmia (small eyes), hypertelorism (wide-set eyes), thin forehead, high palate, underdeveloped midface, small mouth, small nose, broad, flat nasal bridge, short neck, low hairline, irregular or wrongly positioned teeth, low-set ears, micrognathia (small jaw), tooth enamel defects, short stature, microcephaly (small head), a prominent, long philtrum, and earlobes turned inwards.
Congenital heart disease is associated with 13q deletion syndrome. Common defects include atrial septal defect, tetralogy of Fallot, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, and coarctation of the aorta. Defects of the endocrine system, digestive system, and genitourinary system are also common. These include underdevelopment or agenesis of the pancreas, adrenal glands, thymus, gallbladder, and thyroid; Hirschsprung's disease; gastric reflux, imperforate anus, retention testis, ectopic kidney, renal agenesis, and hydronephrosis.
A variety of brain abnormalities are also associated with 13q deletion. They can include epilepsy, craniosynostosis (premature closing of the skull bones), spastic diplegia, cerebral hypotrophy, underdevelopment or agenesis of the corpus callosum, cerebellar hypoplasia, deafness, and, rarely, hydrocephalus, Dandy–Walker syndrome, and spina bifida. The eyes can be severely damaged and affected individuals may be blind. They may also have coloboma of the iris or choroid, strabismus, nystagmus, glaucoma, or cataracts.
Other skeletal malformations are found with 13q deletion syndrome, including syndactyly, clubfoot, clinodactyly, and malformations of the vertebrae and/or thumbs.
Deletions that include the 13q32 band, which contains the brain development gene ZIC2, are associated with holoprosencephaly; they are also associated with hand and foot malformations. Deletions that include the 13q14 band, which contains the tumor suppressor gene Rb, are associated with a higher risk of developing retinoblastoma, which is more common in XY children. Deletion of the 13q33.3 band is associated with hypospadias. Other genes in the potentially affected region include NUFIP1, HTR2A, PDCH8, and PCDH17.
Septo-optic dysplasia is a highly variable disorder. It is rare for siblings to present with identical features of the septo-optic dysplasia spectrum. Many patients present with additional developmental defects outside the septo-optic dysplasia triad. In particular digital defects are common.
The clinical phenotype of 3q29 microdeletion syndrome is variable. Clinical features can include mild/moderate mental retardation with mildly dysmorphic facial features (long and narrow face, short philtrum and a high nasal bridge). Of the 6 reported patients, additional features including autism, ataxia, chest-wall deformity and long, tapering fingers were found in at least two patients. A review of 14 children with insterstitial deletions of 3q29, found 11 who had the common recurrent 1.6Mb deletion and displayed mental retardation and microcephaly.
The variability of phenotype is underscored by the report on a 6 and 9/12 year-old male patient with a de novo chromosome 3q29 microdeletion identified by BAC array comparative genomic hybridization assay (aCGH), with accompanying normal 46,XY high-resolution chromosome analysis. The patient has language-based learning disabilities and behavioral features consistent with diagnoses of autism and attention deficit hyperactivity disorder (ADHD) of the inattentive type. He also displays some other features previously associated with chromosome 3q29 microdeletion such as an elongated face, long fingers, and joint laxity. Most notably the patient, per formal IQ testing, was not found to have frank mental retardation as has been previously reported among patients with chromosome 3q29 terminal deletion, but rather the patient has demonstrated an average full-scale IQ result. This report further expands the phenotypic spectrum to include the possibility of normal intelligence as corroborated by formal, longitudinal psycho-educational testing.
The presence of two homologous low copy repeats either side of the deletion break-point suggests that non-allelic homologous recombination is the likely mechanism underlying this syndrome.
Young–Madders syndrome is detectable from the fetal stage of development largely due to the distinctive consequences of holoprosencephaly, a spectrum of defects or malformations of the brain and face. Facial defects which may manifest in the eyes, nose, and upper lip, featuring cyclopia, anosmia, or in the growth of only a single central incisor, and severe overlapping of the bones of the skull. Cardiac and in some cases pulmonary deformities are present. Another signature deformity is bilateral polydactyly, and many patients also suffer from hypoplasia and genital deformities.
3q29 microdeletion syndrome is a rare genetic disorder resulting from the deletion of a segment of chromosome 3. This syndrome was first described in 2005.
Cebocephaly [Greek "kebos", monkey + "kephale", head] is a developmental anomaly of the head characterized by a monkey-like head, with a defective small, flattened nose with a single nostril or absent nose and closely set eyes. Cebocephaly is part of a group of defects called holoprosencephaly. The incidence of cebocephaly is 1 in 16,000 births.
Young–Madders syndrome, alternatively known as Pseudotrisomy 13 syndrome or holoprosencephaly–polydactyly syndrome, is a genetic disorder resulting from defective and duplicated chromosomes which result in holoprosencephaly, polydactyly, facial malformations and mental retardation, with a significant variance in the severity of symptoms being seen across known cases. Many cases often suffer with several other genetic disorders, and some have presented with hypoplasia, cleft lip, cardiac lesions and other heart defects. In one case in 1991 and another in 2000 the condition was found in siblings who were the product of incest. Many cases are diagnosed prenatally and often in siblings. Cases are almost fatal in the prenatal stage with babies being stillborn.
Though it is now thought that earlier cases were misdiagnosed as other genetic disorders with similar pathology—such as Smith–Lemli–Opitz syndrome—the earliest publicised recognition of the condition as a new, hitherto unclassified, genetic disorder was made by two British doctors in Leicester in 1987. Though they identified the condition, later named for them, they did not identify the genetic anomalies responsible but suspected a link with trisomy 13 due to the similar symptoms. With only one or two occurrences documented towards the end of the decade, a group of eight doctors published a five-patient case-study in 1991 which identified the likely chromosomal factors that caused the condition, similar to but distinct from trisomy 13, and gave it the name 'holoprosencephaly–polydactyly syndrome' based on its two most prolific presenting conditions. Later research showed that the condition could manifest in patients with normal karyotypes, without duplication of the chromosomes, and the most recent genetic research implicates problems with the gene code FBXW11 as a likely cause.