Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Telangiectasia (small vascular malformations) may occur in the skin and mucosal linings of the nose and gastrointestinal tract. The most common problem is nosebleeds (epistaxis), which happen frequently from childhood and affect about 90–95% of people with HHT. Lesions on the skin and in the mouth bleed less often but may be considered cosmetically displeasing; they affect about 80%. The skin lesions characteristically occur on the lips, the nose and the fingers, and on the skin of the face in sun-exposed areas. They appear suddenly, with the number increasing over time.
About 20% are affected by symptomatic digestive tract lesions, although a higher percentage have lesions that do not cause symptoms. These lesions may bleed intermittently, which is rarely significant enough to be noticed (in the form of bloody vomiting or black stool), but can eventually lead to depletion of iron in the body, resulting in iron-deficiency anemia.
Arteriovenous malformations (AVMs, larger vascular malformations) occur in larger organs, predominantly the lungs (50%), liver (30–70%) and the brain (cerebral AVMs, 10%), with a very small proportion (<1%) having AVMs in the spinal cord.
Vascular malformations in the lungs may cause a number of problems. The lungs normally "filter out" bacteria and blood clots from the bloodstream; AVMs bypass the capillary network of the lungs and allow these to migrate to the brain, where bacteria may cause a brain abscess and blood clots may lead to stroke. HHT is the most common cause of lung AVMs: out of all people found to have lung AVMs, 70–80% are due to HHT. Bleeding from lung AVMs is relatively unusual, but may cause hemoptysis (coughing up blood) or hemothorax (blood accumulating in the chest cavity). Large vascular malformations in the lung allow oxygen-depleted blood from the right ventricle to bypass the alveoli, meaning that this blood does not have an opportunity to absorb fresh oxygen. This may lead to breathlessness. Large AVMs may lead to platypnea, difficulty in breathing that is more marked when sitting up compared to lying down; this probably reflects changes in blood flow associated with positioning. Very large AVMs cause a marked inability to absorb oxygen, which may be noted by cyanosis (bluish discoloration of the lips and skin), clubbing of the fingernails (often encountered in chronically low oxygen levels), and a humming noise over the affected part of the lung detectable by stethoscope.
The symptoms produced by AVMs in the liver depend on the type of abnormal connection that they form between blood vessels. If the connection is between arteries and veins, a large amount of blood bypasses the body's organs, for which the heart compensates by increasing the cardiac output. Eventually congestive cardiac failure develops ("high-output cardiac failure"), with breathlessness and leg swelling among other problems. If the AVM creates a connection between the portal vein and the blood vessels of the liver, the result may be portal hypertension (increased portal vein pressure), in which collateral blood vessels form in the esophagus (esophageal varices), which may bleed violently; furthermore, the increased pressure may give rise to fluid accumulation in the abdominal cavity (ascites). If the flow in the AVM is in the other direction, portal venous blood flows directly into the veins rather than running through the liver; this may lead to hepatic encephalopathy (confusion due to portal waste products irritating the brain). Rarely, the bile ducts are deprived of blood, leading to severe cholangitis (inflammation of the bile ducts). Liver AVMs are detectable in over 70% of people with HHT, but only 10% experience problems as a result.
In the brain, AVMs occasionally exert pressure, leading to headaches. They may also increase the risk of seizures, as would any abnormal tissue in the brain. Finally, hemorrhage from an AVM may lead to intracerebral hemorrhage (bleeding into the brain), which causes any of the symptoms of stroke such as weakness in part of the body or difficulty speaking. If the bleeding occurs into the subarachnoid space (subarachnoid hemorrhage), there is usually a severe, sudden headache and decreased level of consciousness and often weakness in part of the body.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
The various types of vWD present with varying degrees of bleeding tendency, usually in the form of easy bruising, nosebleeds, and bleeding gums. Women may experience heavy menstrual periods and blood loss during childbirth.
Severe internal bleeding and bleeding into joints are uncommon in all but the most severe type, vWD type 3.
Telangiectasias, also known as spider veins, are small dilated blood vessels near the surface of the skin or mucous membranes, measuring between 0.5 and 1 millimeter in diameter.
These dilated blood vessels can develop anywhere on the body but are commonly seen on the face around the nose, cheeks, and chin. Dilated blood vessels can also develop on the legs, although when they occur on the legs, they often have underlying venous reflux or "hidden varicose veins" (see "Venous reflux" below). When found on the legs, they are found specifically on the upper thigh, below the knee joint, and around the ankles.
Many patients who suffer with spider veins seek the assistance of physicians who specialize in vein care or peripheral vascular disease. These physicians are called vascular surgeons or phlebologists. More recently, interventional radiologists have started treating venous problems.
Some telangiectasias are due to developmental abnormalities that can closely mimic the behaviour of benign vascular neoplasms. They may be composed of abnormal aggregations of arterioles, capillaries, or venules. Because telangiectasias are vascular lesions, they blanch when tested with diascopy.
Telangiectasia is a component of the CREST variant of scleroderma, also known today as limited scleroderma (CREST is an acronym that stands for calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia).
Goldman states that "numerous inherited or congenital conditions display cutaneous telangiectasia".
These include:
- Naevus flammeus (port-wine stain)
- Klippel-Trenaunay syndrome
- Maffucci's syndrome (multiple enchondromas & hemangiomas)
- Hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome)
- Ataxia-telangiectasia
- Sturge-Weber syndrome, a nevus formation in the skin supplied by the trigeminal nerve and associated with facial port-wine stains, glaucoma, meningeal angiomas and mental retardation
- Hypotrichosis–lymphedema–telangiectasia syndrome, caused by mutation in transcription factor "SOX18"
A spider angioma (also known as a nevus araneus, spider nevus, vascular spider, and spider telangiectasia) is a type of telangiectasis (swollen blood vessels) found slightly beneath the skin surface, often containing a central red spot and reddish extensions which radiate outwards like a spider's web. They are common and may be benign, presenting in around 10–15% of healthy adults and young children. However, having more than three spider angiomas is likely to be abnormal and may be a sign of liver disease. It also suggests the probability of esophageal varices.
Spider angiomas are found only in the distribution of the superior vena cava, and are thus commonly found on the face, neck, upper part of the trunk, and arms. They may also be present on the backs of the hands and fingers in young children.
Autosomal Dominant Retinal Vasculopathy with Cerebral Leukodystrophy (AD-RVCL) (previously known also as Cerebroretinal Vasculopathy, CRV, or Hereditary Vascular Retinopathy, HVR or Hereditary Endotheliopathy, Retinopathy, Nephropathy, and Stroke, HERNS) is an inherited condition resulting from a frameshift mutation to the TREX1 gene. This genetically inherited condition affects the retina and the white matter of the central nervous system, resulting in vision loss, lacunar strokes and ultimately dementia. Symptoms commonly begin in the early to mid-forties, and treatments currently aim to manage or alleviate the symptoms rather than treating the underlying cause. The overall prognosis is poor, and death can sometimes occur within 10 years of the first symptoms appearing.
AD-RVCL (CRV) Acronym
Autosomal Dominance (genetics) means only one copy of the gene is necessary for the symptoms to manifest themselves.
Retinal Vasculopathy means a disorder that is associated with a disease of the blood vessels in the retina.
Cerebral means having to do with the brain.
Leukodystrophy means a degeneration of the white matter of the brain.
Pathogenesis
The main pathologic process centers on small blood vessels that prematurely “drop out” and disappear. The retina of the eye and white matter of the brain are the most sensitive to this pathologic process. Over a five to ten-year period, this vasculopathy (blood vessel pathology) results in vision loss and destructive brain lesions with neurologic deficits and death.
Most recently, AD-RVCL (CRV) has been renamed. The new name is CHARIOT which stands for Cerebral Hereditary Angiopathy with vascular Retinopathy and Impaired Organ function caused by TREX1 mutations.
Treatment
Currently, there is no therapy to prevent the blood vessel deterioration.
About TREX1
The official name of the TREX1 gene is “three prime repair exonuclease 1.” The normal function of the TREX1 gene is to provide instructions for making the 3-prime repair exonuclease 1 enzyme. This enzyme is a DNA exonuclease, which means it trims molecules of DNA by removing DNA building blocks (nucleotides) from the ends of the molecules. In this way, it breaks down unneeded DNA molecules or fragments that may be generated during genetic material in preparation for cell division, DNA repair, cell death, and other processes.
Changes (mutations) to the TREX1 gene can result in a range of conditions one of which is AD-RVCL. The mutations to the TREX1 gene are believed to prevent the production of the 3-prime repair exonuclease 1 enzyme. Researchers suggest that the absence of this enzyme may result in an accumulation of unneeded DNA and RNA in cells. These DNA and RNA molecules may be mistaken by cells for those of viral invaders, triggering immune system reactions that result in the symptoms of AD-RVCL.
Mutations in the TREX1 gene have also been identified in people with other disorders involving the immune system. These disorders include a chronic inflammatory disease called systemic lupus erythematosus (SLE), including a rare form of SLE called chilblain lupus that mainly affects the skin.
The TREX1 gene is located on chromosome 3: base pairs 48,465,519 to 48,467,644
The immune system.
- The immune system is composed of white blood cells or leukocytes.
- There are 5 different types of leukocytes.
- Combined, the 5 different leukocytes represent the 2 types of immune systems (The general or innate immune system and the adaptive or acquired immune system).
- The adaptive immune system is composed of two types of cells (B-cells which release antibodies and T-cells which destroy abnormal and cancerous cells).
How the immune system becomes part of the condition.
During mitosis, tiny fragments of “scrap” single strand DNA naturally occur inside the cell. Enzymes find and destroy the “scrap” DNA. The TREX1 gene provides the information necessary to create the enzyme that destroys this single strand “scrap” DNA. A mutation in the TREX1 gene causes the enzyme that would destroy the single strand DNA to be less than completely effective. The less than completely effective nature of the enzyme allows “scrap” single strand DNA to build up in the cell. The buildup of “scrap” single strand DNA alerts the immune system that the cell is abnormal.
The abnormality of the cells with the high concentration of “scrap” DNA triggers a T-cell response and the abnormal cells are destroyed. Because the TREX1 gene is identical in all of the cells in the body the ineffective enzyme allows the accumulation of “scrap” single strand DNA in all of the cells in the body. Eventually, the immune system has destroyed enough of the cells in the walls of the blood vessels that the capillaries burst open. The capillary bursting happens throughout the body but is most recognizable when it happens in the eyes and brain because these are the two places where capillary bursting has the most pronounced effect.
Characteristics of AD-RVCL
- No recognizable symptoms until after age 40.
- No environmental toxins have been found to be attributable to the condition.
- The condition is primarily localized to the brain and eyes.
- Optically correctable, but continuous, deterioration of visual acuity due to extensive multifocal microvascular abnormalities and retinal neovascularization leading, ultimately, to a loss of vision.
- Elevated levels of alkaline phosphatase.
- Subtle vascular changes in the retina resembling telangiectasia (spider veins) in the parafovea circulation.
- Bilateral capillary occlusions involving the perifovea vessels as well as other isolated foci of occlusion in the posterior pole of the retina.
- Headaches due to papilledema.
- Mental confusion, loss of cognitive function, loss of memory, slowing of speech and hemiparesis due to “firm masses” and white, granular, firm lesions in the brain.
- Jacksonian seizures and grand mal seizure disorder.
- Progressive neurologic deterioration unresponsive to systemic corticosteroid therapy.
- Discrete, often confluent, foci of coagulation necrosis in the cerebral white matter with intermittent findings of fine calcium deposition within the necrotic foci.
- Vasculopathic changes involving both arteries and veins of medium and small caliber present in the cerebral white matter.
- Fibroid necrosis of vessel walls with extravasation of fibrinoid material into adjacent parenchyma present in both necrotic and non-necrotic tissue.
- Obliterative fibrosis in all the layers of many vessel walls.
- Parivascular, adventitial fibrosis with limited intimal thickening.
Conditions with similar symptoms that AD-RVCL can be misdiagnosed as:
- Brain tumors
- Diabetes
- Macular degeneration
- Telangiectasia (Spider veins)
- Hemiparesis (Stroke)
- Glaucoma
- Hypertension (high blood pressure)
- Systemic Lupus Erythematosus (SLE (same original pathogenic gene, but definitely a different disease because of a different mutation in TREX1))
- Polyarteritis nodosa
- Granulomatosis with polyangiitis
- Behçet's disease
- Lymphomatoid granulomatosis
- Vasculitis
Clinical Associations
- Raynaud's phenomenon
- Anemia
- Hypertension
- Normocytic anemia
- Normochromic anemia
- Gastrointestinal bleeding or telangiectasias
- Elevated alkaline phosphatase
Definitions
- Coagulation necrosis
- Endothelium
- Fibrinoid
- Fibrinoid necrosis
- Frameshift mutation
- Hemiparesis
- Jacksonian seizure
- Necrotic
- Necrosis
- Papilledema
- Perivascular
- Retinopathy
- Telangiectasia
- Vasculopathy
- Vascular
What AD-RVCL is not:
- Infection
- Cancer
- Diabetes
- Glaucoma
- Hypertension
- A neurological disorder
- Muscular dystrophy
- Systemic Lupus Erythematosis (SLE)
- Vasculitis
Things that have been tried but turned out to be ineffective or even make things worse:
- Antibiotics
- Steroids
- X-Ray therapy
- Immunosuppression
History of AD-RVCL (CRV)
- 1985 – 1988: CRV (Cerebral Retinal Vasculopathy) was discovered by John P. Atkinson, MD at Washington University School of Medicine in St. Louis, MO
- 1988: 10 families worldwide were identified as having CRV
- 1991: Related disease reported, HERNS (Hereditary Endiotheliopathy with Retinopathy, Nephropathy and Stroke – UCLA
- 1998: Related disease reported, HRV (Hereditary Retinal Vasculopathy) – Leiden University, Netherlands
- 2001: Localized to Chromosome 3.
- 2007: The specific genetic defect in all of these families was discovered in a single gene called TREX1
- 2008: Name changed to AD-RVCL Autosomal Dominant-Retinal Vasculopathy with Cerebral Leukodystrophy
- 2009: Testing for the disease available to persons 21 and older
- 2011: 20 families worldwide were identified as having CRV
- 2012: Obtained mouse models for further research and to test therapeutic agents
Presentation includes telangiectasia, acanthosis, and hyperkeratosis.
Presentation can be solitary or systemic.
Symptoms of AVM vary according to the location of the malformation. Roughly 88% of people with an AVM are asymptomatic; often the malformation is discovered as part of an autopsy or during treatment of an unrelated disorder (called in medicine an "incidental finding"); in rare cases, its expansion or a micro-bleed from an AVM in the brain can cause epilepsy, neurological deficit, or pain.
The most general symptoms of a cerebral AVM include headaches and epileptic seizures, with more specific symptoms occurring that normally depend on the location of the malformation and the individual. Such possible symptoms include:
- Difficulties with movement coordination, including muscle weakness and even paralysis;
- Vertigo (dizziness);
- Difficulties of speech (dysarthria) and communication, such as aphasia;
- Difficulties with everyday activities, such as apraxia;
- Abnormal sensations (numbness, tingling, or spontaneous pain);
- Memory and thought-related problems, such as confusion, dementia or hallucinations.
Cerebral AVMs may present themselves in a number of different ways:
- Bleeding (45% of cases)
- Acute onset of severe headache. May be described as the worst headache of the patient's life. Depending on the location of bleeding, may be associated with new fixed neurologic deficit. In unruptured brain AVMs, the risk of spontaneous bleeding may be as low as 1% per year. After a first rupture, the annual bleeding risk may increase to more than 5%.
- Seizure or brain seizure (46%) Depending on the place of the AVM, it can cause loss of vision in one place.
- Headache (34%)
- Progressive neurologic deficit (21%)
- May be caused by mass effect or venous dilatations. Presence and nature of the deficit depend on location of lesion and the draining veins.
- Pediatric patients
- Heart failure
- Macrocephaly
- Prominent scalp veins
Nonthrombocytopenic purpura is a type of purpura (red or purple skin discoloration) not associated with thrombocytopenia.
Examples/causes include:
- Henoch–Schönlein purpura.
- Hereditary hemorrhagic telangiectasia
- Congenital cytomegalovirus
- Meningococcemia
In some instances nodular angiokeratomas can produce necrotic tissue and valleys that can harbor fungal, bacterial and viral infections. Infections can include staphylococcus. If the lesion becomes painful, begins draining fluids or pus, or begins to smell, consult a physician. In these instance a doctor may recommend excision and grafting.
While there are several possible causes, they generally result in excessive bleeding and a lack of clotting.
In the lungs, pulmonary arteriovenous malformations have no symptoms in up to 29% of all cases.
In medicine (hematology), bleeding diathesis (h(a)emorrhagic diathesis) is an unusual susceptibility to bleed (hemorrhage) mostly due to hypocoagulability, in turn caused by a coagulopathy (a defect in the system of coagulation). Several types are distinguished, ranging from mild to lethal. Also, bleeding diathesis can be caused by thinning of the skin or impaired wound healing.
Universal angiomatosis (also known as "Generalized telangiectasia") is a bleeding disease that affects the blood vessels of the skin and mucous membranes as well as other parts of the body.
Clinical manifestations of intraparenchymal hemorrhage are determined by the size and location of hemorrhage, but may include the following:
- Hypertension, fever, or cardiac arrhythmias
- Nuchal rigidity
- Subhyaloid retinal hemorrhages
- Altered level of consciousness
- Anisocoria, Nystagmus
- Focal neurological deficits
- Putamen - Contralateral hemiparesis, contralateral sensory loss, contralateral conjugate gaze paresis, homonymous hemianopsia, aphasia, neglect, or apraxia
- Thalamus - Contralateral sensory loss, contralateral hemiparesis, gaze paresis, homonymous hemianopia, miosis, aphasia, or confusion
- Lobar - Contralateral hemiparesis or sensory loss, contralateral conjugate gaze paresis, homonymous hemianopia, abulia, aphasia, neglect, or apraxia
- Caudate nucleus - Contralateral hemiparesis, contralateral conjugate gaze paresis, or confusion
- Brain stem - Tetraparesis, facial weakness, decreased level of consciousness, gaze paresis, ocular bobbing, miosis, or autonomic instability
- Cerebellum - Ataxia, usually beginning in the trunk, ipsilateral facial weakness, ipsilateral sensory loss, gaze paresis, skew deviation, miosis, or decreased level of consciousness
In younger patients, vascular malformations, specifically AVMs and cavernous angiomas are more common causes for hemorrhage. In addition, venous malformations are associated with hemorrhage.
In the elderly population, amyloid angiopathy is associated with cerebral infarcts as well as hemorrhage in superficial locations, rather than deep white matter or basal ganglia. These are usually described as "lobar". These bleedings are not associated with systemic amyloidosis.
Hemorrhagic neoplasms are more complex, heterogeneous bleeds often with associated edema. These hemorrhages are related to tumor necrosis, vascular invasion and neovascularity. Glioblastomas are the most common primary malignancies to hemorrhage while thyroid, renal cell carcinoma, melanoma, and lung cancer are the most common causes of hemorrhage from metastatic disease.
Other causes of intraparenchymal hemorrhage include hemorrhagic transformation of infarction which is usually in a classic vascular distribution and is seen in approximately 24 to 48 hours following the ischemic event. This hemorrhage rarely extends into the ventricular system.
LIG4 syndrome (also known as Ligase IV syndrome) is an extremely rare condition caused by mutations in the DNA Ligase IV (LIG4) gene. Some mutations in this gene are associated with a resistance against multiple myeloma and Severe Combined Immunodeficiency. Severity of symptoms depends on the degree of reduced enzymatic activity of Ligase IV or gene expression.
As DNA ligase IV is essential in V(D)J recombination, the mechanism by which immunoglobulins, B cell and T cell receptors are formed, patients with LIG4 syndrome may suffer from less effective or defective V(D)J recombination. Some patients have a severe immunodeficiency characterized by pancytopenia, causing chronic respiratory infections and sinusitis. Clinical features also include Seckel syndrome-like facial abnormalities and microcephaly. Patients also suffer from growth retardation and skin conditions, including photosensitivity, psoriasis and telangiectasia. Although not present in all, patients may also present with hypothyroidism and type II diabetes and possibly malignancies such as acute T-cell leukemia. The clinical phenotype of LIG4 syndrome closely resembles that of Nijmegen breakage syndrome (NBS).
A cerebral arteriovenous malformation (cerebral AVM, CAVM, cAVM) is an abnormal connection between the arteries and veins in the brain—specifically, an arteriovenous malformation in the cerebrum.
Acute hemorrhagic edema of infancy (also known as "Acute hemorrhagic edema of childhood", "Finkelstein's disease", "Infantile postinfectious iris-like purpura and edema", "Medallion-like purpura", "Purpura en cocarde avec oedema" and "Seidlmayer syndrome") is a skin condition that affects children under the age of two with a recent history of upper respiratory illness, a course of antibiotics, or both. The disease was first described in 1938 by Finkelstein and later by Seidlmayer as “Seidlmayer cockade purpura”.
Hypotrichosis–lymphedema–telangiectasia syndrome is a congenital syndrome characterized by lymphedema (swelling of tissue due to malformation or malfunction of lymphatics), the presence of telegiectasias (small dilated vessels near the surface of the skin), and hypotrichosis or alopecia (hair loss). Lymphedema usually develops in the lower extremities during puberty. Hair is normal at birth, but usually lost during infancy. Telangiectasias may present on the palms and soles more commonly than on the scalp, legs, and genitalia. The syndrome has been reported in association with both autosomal dominant and autosomal recessive inheritance patterns.
It is associated with a rare mutation of the transcription factor gene "SOX18".
Paris-Trousseau syndrome (PTS) is an inherited disorder characterized by mild hemorrhagic tendency associated with 11q chromosome deletion. It manifests as a granular defect within an individual's platelets. It is characterized by thrombocytes with defects in α-granule components which affects the cell's surfeace area and, consequently, its abitlity to spread when necessary.
"FLI1" has been suggested as a candidate.
The most frequently observed problems, related to an AVM, are headaches and seizures, backaches, neckaches and eventual nausea, as the coagulated blood makes its way down to be dissolved in the individual's spinal fluid. It is supposed that 15% of the population, at detection, have no symptoms at all. Other common symptoms are a pulsing noise in the head, progressive weakness and numbness and vision changes as well as debilitating, excruciating pain.
In serious cases, the blood vessels rupture and there is bleeding within the brain (intracranial hemorrhage). Nevertheless, in more than half of patients with AVM, hemorrhage is the first symptom. Symptoms due to bleeding include loss of consciousness, sudden and severe headache, nausea, vomiting, incontinence, and blurred vision, amongst others. Impairments caused by local brain tissue damage on the bleed site are also possible, including seizure, one-sided weakness (hemiparesis), a loss of touch sensation on one side of the body and deficits in language processing (aphasia). Ruptured AVMs are responsible for considerable mortality and morbidity.
AVMs in certain critical locations may stop the circulation of the cerebrospinal fluid, causing accumulation of the fluid within the skull and giving rise to a clinical condition called hydrocephalus. A stiff neck can occur as the result of increased pressure within the skull and irritation of the meninges.