Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Early signs and symptoms of the disorder usually appear around ages 2–10, with gradual onset of vision problems, or seizures. Early signs may be subtle personality and behavior changes, slow learning or regression, repetitive speech or echolalia, clumsiness, or stumbling. Slowing head growth in the infantile form, poor circulation in lower extremities (legs and feet), decreased body fat and muscle mass, curvature of the spine, hyperventilation and/or breath-holding spells, teeth grinding, and constipation may occur.
Over time, affected children suffer mental impairment, worsening seizures, and progressive loss of sight, speech, and motor skills. Batten disease is a terminal disease; life expectancy varies depending on the type or variation.
Females with juvenile Batten disease show first symptoms a year later than males, but on average die a year sooner.
Kufs is a neuronal disease, meaning it affects the nervous system, specifically voluntary movement and intellectual function. Symptoms of Kufs can manifest anytime between adolescence and adulthood, however it usually appears around age 30.
There are two types of Kufs: Type A and Type B. Type A causes seizures, myoclonic epilepsy (muscle jerks), dementia, ataxia (compromised muscle coordination), tremors and tics, dysarthria (speech difficulties), confusion, and psychotic behaviour. Although similar to Type A, patients with Type B do not suffer from myoclonic epilepsy or dysarthria, and they do display changes in personality. It is occasional that patients present with skin disorders causing dryness, roughness, and scaliness. The skin symptoms specifically, are a result of Keratin buildup in the skin cells (see ‘Genetic Causes’ for more information). Regardless of the type, most Kufs patients do not survive more than 15 years after their symptoms have manifested.
The classic characterization of the group of neurodegenerative, lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs) is through the progressive, permanent loss of motor and psychological ability with a severe intracellular accumulation of lipofuscins, with the United States and northern European populations having slightly higher frequency with an occurrence of 1 in 10,000. There are four classic diagnoses that have received the most attention from researchers and the medical field, differentiated from one another by age of symptomatic onset, duration, early-onset manifestations such as blindness or seizures, and the forms which lipofuscin accumulation takes.
In the early infantile variant of NCL (also called INCL or Santavuori-Haltia), probands appear normal at birth, but early visual loss leading to complete retinal blindness by the age of 2 years is the first indicator of the disease; by 3 years of age a vegetative state is reached and by 4 years isoelectric encephalograms confirm brain death. Late infantile variant usually manifests between 2 and 4 years of age with seizures and deterioration of vision. The maximum age before death for late infantile variant is 10–12 years. Juvenile NCL (JNCL, Batten Disease, or Spielmeyer-Vogt), with a prevalence of 1 in 100,000, usually arises between 4 and 10 years of age; the first symptoms include considerable vision loss due to retinal dystrophy, with seizures, psychological degeneration, and eventual death in the mid- to late-20s or 30s ensuing. Adult variant NCL (ANCL or Kuf’s Disease) is less understood and generally manifests milder symptoms; however, while symptoms typically appear around 30 years of age, death usually occurs ten years later.
All the mutations that have been associated with this disease have been linked to genes involved with the neural synapses metabolism – most commonly with the reuse of vesicle proteins.
Neuronal ceroid lipofuscinosis (NCL) is the general name for a family of at least eight genetically separate neurodegenerative disorders that result from excessive accumulation of lipopigments (lipofuscin) in the body's tissues. These lipopigments are made up of fats and proteins. Their name comes from the word stem "lipo-", which is a variation on "lipid" or "fat", and from the term "pigment", used because the substances take on a greenish-yellow color when viewed under an ultraviolet light microscope. These lipofuscin materials build up in neuronal cells and many organs, including the liver, spleen, myocardium, and kidneys.
Jansky–Bielschowsky disease is an extremely rare autosomal recessive genetic disorder that is part of the neuronal ceroid lipofuscinosis (NCL) family of neurodegenerative disorders. It is caused by the accumulation of lipopigments in the body due to a deficiency in tripeptidyl peptidase I as a result of a mutation in the TPP1 gene. Symptoms appear between ages 2 and 4 and consist of typical neurodegenerative complications: loss of muscle function (ataxia), drug resistant seizures (epilepsy), apraxia, development of muscle twitches (myoclonus), and vision impairment. This late-infantile form of the disease progresses rapidly once symptoms are onset and ends in death between age 8 and teens. The prevalence of Jansky–Bielschowsky disease is unknown, however NCL collectively affects an estimated 1 in 100,000 individuals worldwide. Jansky–Bielschowsky disease is also known as: late-infantile Batten disease, LINCL, or neuronal ceroid lipofuscinosis.
Kufs disease is one of many diseases categorized under a disorder known as neuronal ceroid lipofuscinosis (NCLs). NCLs are broadly described to create problems with vision, movement and cognitive function. Among all NCLs diseases, Kufs is the only one that does not affect vision, and although this is a distinguishing factor of Kufs, NCLs are typically differentiated by the age at which they appear in a patient
Batten disease is a fatal disease of the nervous system that typically begins in childhood. Onset of symptoms is usually between 5 and 10 years of age. Often it is autosomal recessive. It is the most common form of a group of disorders called the neuronal ceroid lipofuscinoses (NCLs).
Although Batten disease is usually regarded as the juvenile form of NCL (or "type 3"), some physicians use the term Batten disease to describe all forms of NCL. Historically, the NCLs were classified by age of disease onset as infantile NCL (INCL), late infantile NCL (LINCL), juvenile NCL (JNCL) or adult NCL (ANCL). At least 20 genes have been identified in association with Batten disease, but juvenile NCL, the most prevalent form of Batten disease, has been linked to mutations in the "CLN3" gene.
It was first described in 1903.
The development of children born with INCL is normal for the first 8–18 months, but will then flounder and start to regress both physically and mentally. Motor skills and speech are lost, and optic atrophy causes blindness. A variety of neurological symptoms, such as epilepsy and myoclonic seizures, appear. The senses of hearing and touch remain unaffected. The average lifespan of an INCL child is 9–11 years.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
Diagnosis of Jansky–Bielschowsky disease is increasingly based on assay of enzyme activity and molecular genetic testing. Thirteen pathogenic candidate genes—PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8, CTSD, DNAJC5, CTSF, ATP13A2 GRN, KCTD7—are associated with the development of the disease. Patients with Jansky–Bielschowsky disease typically have up to 50% reduced lysosomal enzymes, and thus an enzyme activity assay is a quick and easy diagnostic test.
Vision impairment is an early symptom of Jansky–Bielschowsky disease, and so an eye exam is another common diagnostic tool. During the eye exam, loss of cells within the eye would indicate the presence of the disease however more tests are needed for a complete diagnosis.
Other common diagnostic tests include:
- Blood or urine test: Elevated levels of the chemical dolichol found in the urine is typical of individuals with the disease, as well as the presence of vacuolated lymphocytes in the blood.
- Skin or tissue sampling: Microscopy of skin could be used to observe lipopigment aggregation.
- CT scan or MRI: Visualization of the brain would be able to detect areas of cerebral atrophy.
Infantile neuronal ceroid lipofuscinoses (INCL) or Santavuori disease or Hagberg-Santavuori disease or Santavuori-Haltia disease or Infantile Finnish type neuronal ceroid lipofuscinosis or Balkan disease is a form of NCL and inherited as a recessive autosomal genetic trait. The disorder is progressive, degenerative and fatal, extremely rare worldwide – with approximately 60 official cases reported by 1982, perhaps 100 sufferers in total today – but relatively common in Finland due to the local founder effect.
Northern Epilepsy Syndrome causes recurrent seizures between the ages of five to ten. These seizures, that may last up to 15 minutes, can be classified mostly as tonic-clonic, but partial seizures could also occur. The seizures commonly involve muscle rigidity, convulsions, and loss of consciousness. Generally, the recurrence is one to two times per month.
In the years following the onset of seizures, a noticeable decrease in intellectual capacity is observed.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
Northern epilepsy syndrome or progressive epilepsy with mental retardation (EPMR) is a subtype of neuronal ceroid lipofuscinosis and a rare disease that is regarded as a Finnish heritage disease. Unlike most Finnish heritage diseases, this syndrome has been reported only in Finland.
The disease is characterized by seizures in early childhood that progressively get worse until after puberty. Once the onset of seizures occurs, mental degradation is seen. This continues into adulthood even after seizure frequency has decreased. The cause of the disease is a missense mutation in chromosome 8. The creation of a new protein occurs and the lipid content of the brain is altered because of it. The ratio of the mutation carriers is 1:135. There is nothing that has been found to stop the progression of the disease, but symptomatic approaches, such as the use of benzodiazepines, have helped control seizures.
There are three main disorders caused by Hermansky–Pudlak syndrome, which result in these symptoms:
- Albinism and eye problems: Individuals will have varying amounts of skin pigment (melanin). Because of the albinism there are eye problems such as light sensitivity (photophobia), strabismus (crossed eyes), and nystagmus (involuntary eye movements). Hermansky–Pudlak syndrome also impairs vision.
- Bleeding disorders: Individuals with the syndrome have platelet dysfunction. Since platelets are necessary for blood clotting, individuals will bruise and bleed easily.
- Cellular storage disorders: The syndrome causes a wax-like substance (ceroid) to accumulate in the body tissues and cause damage, especially in the lungs and kidneys.
It is also associated with granulomatous colitis, an inflammation of the colon, and with pulmonary fibrosis, a potentially fatal lung disease.
Unverricht–Lundborg disease (abbreviated ULD or EPM1) is the most common form of an uncommon group of genetic epilepsy disorders called the progressive myoclonus epilepsies. It is caused due to a mutation in the cystatin B gene (CSTB). The disease is named after Heinrich Unverricht, who first described it in 1891, and Herman Bernhard Lundborg, who researched it in greater detail in 1901 and 1903. ULD onsets in children between the ages of 6 and 16; there are no known cases in which the person was older than 18. Most cases originate from the Baltic region of Europe, though many have been reported from countries in the Mediterranean.
Onset of the disease is characterized by myoclonic jerks and tonic-clonic seizures. Early cases often resulted in the need of a wheelchair and death before the age of 24, but new treatments and medications have increased the life expectancy of individuals with ULD, in some cases even to near that of an unaffected individual.
Progressive myoclonus epilepsy (PME) is a rare epilepsy syndrome caused by a variety of genetic disorders. The syndrome includes myoclonic seizures and tonic-clonic seizures together with progressive neurological decline.
Patients with Unverricht–Lundborg disease exhibit myoclonic jerks and tonic-clonic seizures at a young age, between ages 6–16. The myoclonic jerks occur in the muscles of the arms and legs closest to the torso, and are triggered due to a variety of common external stimuli. Seizures begin at an average age of 10.8 years, with myoclonus beginning around 12.1 years. It is not currently possible to diagnose without a genetic test, and since early symptoms are general, it is often mistaken for another more common epilepsy, in many cases juvenile myoclonic epilepsy (JME).
Heřmanský–Pudlák syndrome (often written Hermansky–Pudlak syndrome or abbreviated HPS) is an extremely rare autosomal recessive disorder which results in oculocutaneous albinism (decreased pigmentation), bleeding problems due to a platelet abnormality (platelet storage pool defect), and storage of an abnormal fat-protein compound (lysosomal accumulation of ceroid lipofuscin).
It is considered to affect around 1 in 500,000 people worldwide, with a significantly higher occurrence in Puerto Ricans, with a prevalence of 1 in 1800. Many of the clinical research studies on the disease have been conducted in Puerto Rico.
There are eight classic forms of the disorder, based on the genetic mutation from which the disorder stems.
Harderoporphyria is a rare disorder of heme biosynthesis, inherited in an autosomal recessive manner caused by specific mutations in the "CPOX" gene. Mutations in "CPOX" usually cause hereditary coproporphyria, an acute hepatic porphyria, however the K404E mutation in a homozygous or compound heterozygous state with a null allele cause the more severe harderoporphyria. Harderoporphyria is the first known metabolic disorder where the disease phenotype depended on the type and location of the mutations in a gene associated with multiple disorders.
In contrast with other porphyrias, which typically present with either cutaneous lesions after exposure to sunlight or acute neurovisceral attack at any age (most commonly in adulthood), harderoporphyria is characterized by jaundice, anemia enlarged liver and spleen, often presenting in the neonatal period. Later in life, these individuals may present with photosensitivity similar to that found in cutaneous porphyrias.
Biochemically, harderoporphyria presents with a distinct pattern of increased harderoporphyrin (2-vinyl-4,6,7-tripropionic acid porphyrin) in urine and particularly in feces, a metabolite that is not seen in significant quantities in any other porphyria. Enzyme tests show markedly reduced activity of coproporphyrinogen oxidase, compared to both unaffected individuals and those affected with hereditary coproporphyria, consistent with recessive inheritance.
Harderoporphyria is a rare condition, with less than 10 cases reported worldwide. It may be underdiagnosed, as it does not have the typical presentation associated with a porphyria. It was identified as a variant type of coproporphyria in 1983, in a family with three children identified at birth with jaundice and hemolytic anemia. There is no standard treatment for harderoporphyria; care is mainly focused on the management of symptoms.
In the early stages, it can be difficult to distinguish progressive myoclonic epilepsy from benign idiopathic generalised epilepsies, such as juvenile myoclonic epilepsy. With PME, the initial effectiveness of anticonvulsant treatment diminishes as seizures become more frequent and neurological decline progresses. However, these can also be signs of anticonvulsant intoxication. The myoclonus in PME is usually severe and is the prominent seizure type.
Congenital dyserythropoietic anemia type II (CDA II), or hereditary erythroblastic multinuclearity with positive acidified serum lysis test (HEMPAS) is a rare genetic anemia in humans characterized by hereditary erythroblastic multinuclearity with positive acidified serum lysis test.
OPCA is characterized by progressive cerebellar ataxia, leading to clumsiness in body movements, veering from midline when walking, wide-based stance, and falls without signs of paralysis or weakness. Clinical presentation can vary greatly between patients, but mostly affects speech, balance and walking. Other possible neurological problems include spasmodic dysphonia, hypertonia, hyperreflexia, rigidity, dysarthria, dysphagia and neck dystonic posture.
The anemia associated with CDA type II can range from mild to severe, and most affected individuals have jaundice, hepatosplenomegaly, and the formation of hard deposits in the gallbladder called bilirubin gallstones. This form of the disorder is usually diagnosed in adolescence or early adulthood. An abnormal buildup of iron typically occurs after age 20, leading to complications including heart disease, diabetes, and cirrhosis.
In 1993, A. E. Hardnig proposed to classify hereditary motor neuropathies into seven groups based on age at onset, mode of inheritance, and presence of additional features. This initial classification has since been widely adopted and expanded and currently looks as follows:
Note: Acronym "HMN" is also used interchangeably with "DHMN".