Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
BAL has similar symptoms with other types of leukemia, but usually more serious.
Symptoms caused by bone marrow damage
Bruising, spotting: the reason is lack of platelets, it is very common in BAL patients, most of patients die due to the
Anemia: Because the decline of hematopoietic function, need blood transfusion therapy
Persistent fever, infection prolonged healing:
Diffuse hemorrhage: also called Septicemia, which is dangerous and might lead to death.
Symptoms caused by blood cancer cells infiltration into tissues:
Lymphadenopathy
Joint pain
Swelling of the gums
Hepatoslenomegaly
Headache and vomiting: blood cancer infiltration into the wear performance of the central nervous system.
Skin lumps: Because look was slightly green, also known as the "Green tumor."
Pericardial or pleural effusion
M2 is a subtype of AML (Acute Myeloid Leukemia).
It is also known as "Acute Myeloblastic Leukemia with Maturation".
Severe combined immunodeficiency, SCID, also known as alymphocytosis, Glanzmann–Riniker syndrome, severe mixed immunodeficiency syndrome, and thymic alymphoplasia, is a rare genetic disorder characterized by the disturbed development of functional T cells and B cells caused by numerous genetic mutations that result in heterogeneous clinical presentations. SCID involves defective antibody response due to either direct involvement with B lymphocytes or through improper B lymphocyte activation due to non-functional T-helper cells. Consequently, both "arms" (B cells and T cells) of the adaptive immune system are impaired due to a defect in one of several possible genes. SCID is the most severe form of primary immunodeficiencies, and there are now at least nine different known genes in which mutations lead to a form of SCID. It is also known as the bubble boy disease and bubble baby disease because its victims are extremely vulnerable to infectious diseases and some of them, such as David Vetter, have become famous for living in a sterile environment. SCID is the result of an immune system so highly compromised that it is considered almost absent.
SCID patients are usually affected by severe bacterial, viral, or fungal infections early in life and often present with interstitial lung disease, chronic diarrhoea, and failure to thrive. Ear infections, recurrent "Pneumocystis jirovecii" (previously carinii) pneumonia, and profuse oral candidiasis commonly occur. These babies, if untreated, usually die within one year due to severe, recurrent infections unless they have undergone successful hematopoietic stem cell transplantation.
The signs and symptoms of DOCK8 deficiency are similar to the autosomal dominant form, STAT3 deficiency. However, in DOCK8 deficiency, there is no skeletal or connective tissue involvement, and affected individuals do not have the characteristic facial features of those with autosomal dominant hyper-IgE syndrome. DOCK8 deficient children often have eczema, respiratory and skin staphylococcus infections.
Beyond these, many other recurrent infections have been observed, including recurrent fungal infections and recurrent viral infections (including molluscum contagiosum, herpes simplex, and herpes zoster), recurrent upper respiratory infection (including "Streptococcus pneumoniae", "Haemophilus influenzae", respiratory syncytial virus, and adenovirus), recurrent sinusitis, recurrent otitis media, mastoiditis, pneumonia, bronchitis with bronchiectasis, osteomyelitis, candidiasis, meningitis (caused by cryptococcus or H. influenzae), pericarditis, salmonella enteritis, and giardiasis. Other dermatologic problems include squamous-cell carcinoma/dysplasia (vulvar, anal, and facial). Immune problems are also common, including autoimmune hemolytic anemia, severe allergies (both food and environmental), asthma, and reactive airway disease. The nervous system may also be affected; observed conditions in DOCK8 deficient people include hemiplegia, ischemic stroke, subarachnoid hemorrhage, and facial paralysis. Vascular complications are common, including aortic aneurysm, cerebral aneurysm, vessel occlusion and underperfusion, and leukocytoclastic vasculitis.
Initial symptoms can be nonspecific, particularly in children. Over 50% of children with leukemia had one or more of five features: a liver one can feel (64%), a spleen one can feel (61%), pale complexion (54%), fever (53%), and bruising (52%). Additionally, recurrent infections, feeling tired, arm or leg pain, and enlarged lymph nodes can be prominent features. The B symptoms, such as fever, night sweats, and weight loss, are often present as well.
Central nervous system (CNS) symptoms such cranial neuropathies due to meningeal infiltration are identified in less than 10% of adults and less than 5% of children, particularly mature B-cell ALL (Burkitt leukemia) at presentation.
The signs and symptoms of ALL are variable and include:
- Generalized weakness and feeling tired
- Anemia
- Dizziness
- Headache, vomiting, lethargy, nuchal rigidity, or cranial nerve palsies (CNS involvement)
- Frequent or unexplained fever and infection
- Weight loss and/or loss of appetite
- Excessive and unexplained bruising
- Bone pain, joint pain (caused by the spread of "blast" cells to the surface of the bone or into the joint from the marrow cavity)
- Breathlessness
- Enlarged lymph nodes, liver and/or spleen
- Pitting edema (swelling) in the lower limbs and/or abdomen
- Petechiae, which are tiny red spots or lines in the skin due to low platelet levels
- Testicular enlargement
- Mediastinal mass
The following symptoms are typical ones which lead to testing for JMML, though children with JMML may exhibit any combination of them: pallor, fever, infection, bleeding, cough, poor weight gain, a maculopapular rash (discolored but not raised, or small and raised but not containing pus), lymphadenopathy (enlarged lymph nodes), moderate hepatomegaly (enlarged liver), marked splenomegaly (enlarged spleen), leukocytosis (high white blood cell count in blood), absolute monocytosis (high monocyte count in blood), anemia (low red blood cell count in blood), and thrombocytopenia (low platelet count in blood). Most of these conditions are common, nonspecific signs and symptoms.
Children with JMML and neurofibromatosis 1 (NF1) (about 14% of children with JMML are also clinically diagnosed with NF1, though up to 30% carry the NF1 gene mutation) may also exhibit any of the following symptoms associated with NF1 (in general, only young children with NF1 are at an increased risk of developing JMML):
- 6 or more café-au-lait (flat, coffee-colored) spots on the skin
- 2 or more neurofibromas (pea-size bumps that are noncancerous tumors) on or under the skin
- Plexiform neurofibromas (larger areas on skin that appear swollen)
- Optic glioma (a tumor on the optic nerve that affects vision)
- Freckles under the arms or in the groin
- 2 or more Lisch nodules (tiny tan or brown-colored spots on the iris of the eye)
- Various bone deformations including bowing of the legs below the knee, scoliosis, or thinning of the shin bone
Noonan syndrome (NS) may predispose to the development of JMML or a myeloproliferative disorder (MPD) associated with NS (MPD/NS) which resembles JMML in the first weeks of life. However, MPD/NS may resolve without treatment. Children with JMML and Noonan's syndrome may also exhibit any of the following most-common symptoms associated with Noonan's syndrome:
- Congenital heart defects, in particular, pulmonic stenosis (a narrowing of the valve from the heart to the lungs)
- Undescended testicles in males
- Excess skin and low hair line on back of neck
- Widely set eyes
- Diamond-shaped eyebrows
- Ears that are low-set, backward-rotated, thick outer rim
- Deeply grooved philtrum (upper lip line)
- Learning delays
Fanconi anaemia (FA) is a rare genetic disease resulting in impaired response to DNA damage. Although it is a very rare disorder, study of this and other bone marrow failure syndromes has improved scientific understanding of the mechanisms of normal bone marrow function and development of cancer. Among those affected, the majority develops cancer, most often acute myelogenous leukemia, and 90% develop bone marrow failure (the inability to produce blood cells) by age 40. About 60–75% of people have congenital defects, commonly short stature, abnormalities of the skin, arms, head, eyes, kidneys, and ears, and developmental disabilities. Around 75% of people have some form of endocrine problems, with varying degrees of severity.
FA is the result of a genetic defect in a cluster of proteins responsible for DNA repair.
Treatment with androgens and hematopoietic (blood cell) growth factors can help bone marrow failure temporarily, but the long-term treatment is bone marrow transplant if a donor is available. Because of the genetic defect in DNA repair, cells from people with FA are sensitive to drugs that treat cancer by DNA crosslinking, such as mitomycin C. The typical age of death was 30 years in 2000.
FA occurs in about one per 130,000 births, with a higher frequency in Ashkenazi Jews in Israel and Afrikaners in South Africa. The disease is named after the Swiss pediatrician who originally described this disorder, Guido Fanconi. It should not be confused with Fanconi syndrome, a kidney disorder also named after Fanconi.
Reticular dysgenesis (RD) is a rare, inherited autosomal recessive disease that results in immunodeficiency. Individuals with RD have mutations in both copies of the AK2 gene. Mutations in this gene lead to absence of AK2 protein. AK2 protein allows hematopoietic stem cells to differentiate and proliferate. Hematopoietic stem cells give rise to blood cells.
Differentiation and proliferation of hematopoietic stem cells require a lot of energy and this energy is supplied by the mitochondria. The energy metabolism of mitochondria is regulated by the AK2 protein. If there is a mutation in the protein, that means that the mitochondria metabolism most likely will be altered and will not be able to provide enough energy to the hematopoietic stem cells. As a result, hematopoietic stem cells will not be able to differentiate or proliferate.
The immune system consists of specialized cells that work together to fight off bacteria, fungi and viruses. These cells include T lymphocytes (T cells), that primarily mediate the immune system, B lymphocytes (B cells) and Natural Killer cells. Patients with RD have a genetic defect that affects the T cells and at least one other type of immune cell. Since more than one type of immune cell is affected, this disease is classified as a severe combined immunodeficiency disease (SCID). A weakened immune system leaves patients susceptible to different kinds of infection. Commonly, patients who are diagnosed with RD also have bacterial sepsis and/or pneumonia.
FA is characterized by bone marrow failure, AML, solid tumors, and developmental abnormalities. Classic features include abnormal thumbs, absent radii, short stature, skin hyperpigmentation, including café au lait spots, abnormal facial features (triangular face, microcephaly), abnormal kidneys, and decreased fertility. Many FA patients (about 30%) do not have any of the classic physical findings, but Diepoxybutane chromosome fragility assay showing increased chromosomal breaks can make the diagnosis. . About 80% of FA will develop bone marrow failure by age 20.
The first sign of a hematologic problem is usually petechiae and bruises, with later onset of pale appearance, feeling tired, and infections. Because macrocytosis usually precedes a low platelet count, patients with typical congenital anomalies associated with FA should be evaluated for an elevated red blood cell mean corpuscular volume.
Health professionals must look at a person's history, symptoms, physical exam and laboratory test in order to make a diagnosis. If the results show patients with low levels of lymphocytes, absence of granulocytes or absence of thymus then the patient may be suspected to have RD.
Acute biphenotypic leukaemia is an uncommon type of leukemia which arises in multipotent progenitor cells which have the ability differentiating into both myeloid and lymphoid lineages. It is a subtype of "leukemia of ambiguous lineage".
The direct reason lead BAL is still not clear. BAL can be de novo or secondary to previous cytotoxic therapy. Many factors, such as virus, hereditary factors, radiation, might have relationship with BAL.
BAL is hard to treat, usually the chemotherapy is chosen according to the morphology of the blast (ALL or AML). The stem cell transplantation is highly recommended.
About 5% of acute leukaemia cases are BAL. BAL could occur in all the age of the people, but more in adults than in children.
Clonal hypereosinophilia, also termed Primary hypereosinophelia or clonal eosinophilia, is a grouping of hematological disorder characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell, in the bone marrow, blood, and/or other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.
The clone of eosinophils bear a mutation in any one of several genes that code for proteins that regulate cell growth. The mutations cause these proteins to be continuously active and thereby to stimulate growth in an uncontrolled and continuous manner. The expanding population of eosinophils, initially formed in the bone marrow may spread to the blood and then enter into and injure various tissues and organs.
Clinically, clonal eosinophilia resembles various types of chronic or acute leukemias, lymphomas, or myeloproliferative hematological malignancies. However, many of the clonal hypereosinophilias are distinguished from these other hematological malignancies by the genetic mutations which underlie their development and, more importantly, by their susceptibility to specific treatment regiments. That is, many types of these disorders are remarkably susceptible to relatively non-toxic drugs.
XMEN patients have splenomegaly, chronic Epstein Barr Virus (EBV) infection, and are developmentally normal. They have an increased susceptibility for developing EBV+ lymphoma. Additionally, XMEN patients have excessive infections consistent with the underlying immunodeficiency. These infections included recurrent otitis media, sinusitis, viral pneumonia, diarrhea, upper respiratory infections, epiglottitis, and pertussis. Although autoimmune symptoms do not feature prominently in XMEN autoimmune cytopenias were observed in two unrelated patients.
In the figure to the left, major features are present in all XMEN patients, while minor features are found only in some.
The disease is believed to be induced by a combination of Epstein Barr virus infection and immunosuppression through; immunosuppressive drugs (with case reports of methotrexate and azathioprine), infections such as HIV or chronic viral hepatitis or endogenous T-cell defects.
Most initial symptoms of leukemia are similar to symptoms for irregular bone-marrow function. Typically, most symptoms do not occur during the early stages of leukemia, and children may experience different symptoms. The following are symptoms of leukemia that lead doctors to look for different types of juvenile leukemia:
Lymphomatoid granulomatosis (LYG or LG) is a very rare lymphoproliferative disorder first characterized in 1972 with lymphomatoid meaning lymphoma-like and granulomatosis denoting one of its microscopic characteristics, polymorphic lymphoid infiltrates and focal necrosis within it. While most commonly found in middle age patients, it has been observed in young people with a study identifying 47 cases of patients aged 0–18 years in the literature. Males are found to be affected twice as often as females.
XMEN disease is a rare genetic disorder of the immune system that illustrates the role of Mg2+ in cell signaling. XMEN stands for “X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia.” It is characterized by CD4 lymphopenia, severe chronic viral infections, and defective T-lymphocyte activation. Investigators in the laboratory of Dr. Michael Lenardo, National Institute of Allergy and Infectious Diseases at the National Institutes of Health first described this condition in 2011.
About half of US states are performing screening for SCID in newborns using real-time quantitative PCR to measure the concentration of T-cell receptor excision circles. Wisconsin and Massachusetts (as of February 1, 2009) screen newborns for SCID. Michigan began screening for SCID in October 2011. Some SCID can be detected by sequencing fetal DNA if a known history of the disease exists. Otherwise, SCID is not diagnosed until about six months of age, usually indicated by recurrent infections. The delay in detection is because newborns carry their mother's antibodies for the first few weeks of life and SCID babies look normal.
About 90% of JMML patients have some sort of genetic abnormality in their leukemia cells that can be identified with laboratory testing. This includes:
- 15-20% of patients with neurofibromatosis 1 (NF1)
- 25% of patients with mutations in one of the RAS family of oncogenes (only in their leukemia cells)
- Another 35% of patients with a mutation in a gene called PTPN11 (again, only in their leukemia cells).
DOCK8 deficiency, also called DOCK8 immunodeficiency syndrome, is the autosomal recessive form of hyperimmunoglobulin E syndrome, a genetic disorder characterized by elevated immunoglobulin E levels, eosinophilia, and recurrent infections with staphylococcus and viruses. It is caused by a mutation in the "DOCK8" gene.
Childhood leukemia is a type of leukemia, usually acute lymphocytic leukemia (ALL), and a type of childhood cancer. The cure rate of childhood leukemia is generally higher than adult leukemia, approaching 90%, although some side effects of treatment last into adulthood. The older aggressive treatments of cranial irradiation and anthracyclines (such as doxorubicin) caused increased risk of solid tumors, heart failure, growth retardation, and cognitive defects.
Leukemia is a hematological malignancy or a cancer of the blood. It develops in the bone marrow, the soft inner part of bones where new blood cells are made. When a child has leukemia, the bone marrow produces white blood cells that do not mature correctly. Normal healthy cells only reproduce when there is enough space for them. The body will regulate the production of cells by sending signals of when to stop production. When a child has leukemia, the cells do not respond to the signals telling them when to stop and when to produce cells, regardless of the available space.
Acute lymphoblastic leukemia (ALL) is a cancer of the lymphoid line of blood cells characterized by the development of large numbers of immature lymphocytes. Symptoms may include feeling tired, pale skin color, fever, easy bleeding or bruising, enlarged lymph nodes, or bone pain. As an acute leukemia, ALL progresses rapidly and is typically fatal within weeks or months if left untreated.
Most cases occur due to an unknown reason. Genetic risk factors may include Down syndrome, Li-Fraumeni syndrome, or neurofibromatosis type 1. Environment risk factors may include significant radiation exposure or prior chemotherapy. Evidence regarding electromagnetic fields or pesticides is unclear. Some hypothesize that an abnormal immune response to a common infection may be a trigger. The underlying mechanism involves multiple genetic mutations that results in rapid cell division. The excessive immature lymphocytes in the bone marrow interfere with the production of new red blood cells, white blood cells, and platelets. Diagnosis is typically based on blood tests and bone marrow examination.
ALL is typically treated initially with chemotherapy aimed at bringing about remission. This is then followed by further chemotherapy typically over a number of years. Additional treatments may include intrathecal chemotherapy or radiation therapy if spread to the brain has occurred. Stem cell transplantation may be used if the disease recurs following standard treatment. Additional treatments such as immunotherapy are being studied.
ALL affected about 876,000 people globally in 2015 and resulted in about 111,000 deaths. It occurs most commonly in children, particularly those between the ages of two and five. In the United States it is the most common cause of cancer and death from cancer among children. ALL is notable for being the first disseminated cancer to be cured. Survival for children increased from under 10% in the 1960s to 90% in 2015. Survival rates remain lower for babies (50%) and adults (35%).
Myelodysplastic syndromes (MDS) are a group of cancers in which immature blood cells in the bone marrow do not mature and therefore do not become healthy blood cells. Early on there are typically no symptoms. Later symptoms may include feeling tired, shortness of breath, easy bleeding, or frequent infections. Some types may develop into acute myeloid leukemia.
Risk factors include previous chemotherapy or radiation therapy, exposure to certain chemicals such as tobacco smoke, pesticides, and benzene, and exposure to heavy metals such as mercury or lead. Problems with blood cell formation result in some combination of low red blood cells, low platelets, and low white blood cells. Some types have an increase in immature blood cells, called blasts, in the bone marrow or blood. The types of MDS are based on specific changes in the blood cells and bone marrow.
Treatments may include supportive care, drug therapy, and stem cell transplantation. Supportive care may include blood transfusions, medications to increase the making of red blood cells, and antibiotics. Drug therapy may include the medication lenalidomide, antithymocyte globulin, and azacitidine. Certain people can be cured with chemotherapy followed by a stem-cell transplant from a donor.
About seven per 100,000 people are affected with about four per 100,000 people newly acquiring the condition each year. The typical age of onset is 70 years. The outlook depends on the type of cells affected, the number of blasts in the bone marrow or blood, and the changes present in the chromosomes of the affected cells. The typical survival rate following diagnosis is 2.5 years. The conditions were first recognized in the early 1900s. The current name came into use in 1976.
Myelophthisic anemia (or myelophthisis) is a severe type of anemia found in some people with diseases that affect the bone marrow. Myelophthisis refers to the displacement of hemopoietic bone-marrow tissue either by fibrosis, tumors or granulomas. The word comes from the roots "myelo-", which refers to bone marrow, and "phthysis", shrinkage or atrophy.
LAD was first recognized as a distinct clinical entity in the 1970s. The classic descriptions of LAD included recurrent bacterial infections, defects in neutrophil adhesion, and a delay in umbilical cord sloughing. The adhesion defects result in poor leukocyte chemotaxis, particularly neutrophil, inability to form pus and neutrophilia.
Individuals with LAD suffer from bacterial infections beginning in the neonatal period. Infections such as omphalitis, pneumonia, gingivitis, and peritonitis are common and often life-threatening due to the infant's inability to properly destroy the invading pathogens. These individuals do not form abscesses because granulocytes cannot migrate to the sites of infection.