Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms of subdural hemorrhage have a slower onset than those of epidural hemorrhages because the lower pressure veins bleed more slowly than arteries. Therefore, signs and symptoms may show up in minutes, if not immediately but can be delayed as much as 2 weeks. If the bleeds are large enough to put pressure on the brain, signs of increased ICP (intracranial pressure) or damage to part of the brain will be present.
Other signs and symptoms of subdural hematoma can include any combination of the following:
- A history of recent head injury
- Loss of consciousness or fluctuating levels of consciousness
- Irritability
- Seizures
- Pain
- Numbness
- Headache (either constant or fluctuating)
- Dizziness
- Disorientation
- Amnesia
- Weakness or lethargy
- Nausea or vomiting
- Loss of appetite
- Personality changes
- Inability to speak or slurred speech
- Ataxia, or difficulty walking
- Loss of muscle control
- Altered breathing patterns
- Hearing loss or hearing ringing (tinnitus)
- Blurred Vision
- Deviated gaze, or abnormal movement of the eyes.
Subdural hematomas are divided into acute, subacute, and chronic, depending on the speed of their onset. Acute subdural hematomas that are due to trauma are the most lethal of all head injuries and have a high mortality rate if they are not rapidly treated with surgical decompression.
Acute bleeds often develop after high speed acceleration or deceleration injuries and are increasingly severe with larger hematomas. They are most severe if associated with cerebral contusions. Though much faster than chronic subdural bleeds, acute subdural bleeding is usually venous and therefore slower than the typically arterial bleeding of an epidural hemorrhage. Acute subdural bleeds have a high mortality rate, higher even than epidural hematomas and diffuse brain injuries, because the force (acceleration/deceleration) required to cause them causes other severe injuries as well. The mortality rate associated with acute subdural hematoma is around 60 to 80%.
Chronic subdural bleeds develop over a period of days to weeks, often after minor head trauma, though such a cause is not identifiable in 50% of patients. They may not be discovered until they present clinically months or years after a head injury. The bleeding from a chronic bleed is slow, probably from repeated minor bleeds, and usually stops by itself. Since these bleeds progress slowly, they present the chance of being stopped before they cause significant damage. Small chronic subdural hematomas, those less than a centimeter wide, have much better outcomes than acute subdural bleeds: in one study, only 22% of patients with chronic subdural bleeds had outcomes worse than "good" or "complete recovery". Chronic subdural hematomas are common in the elderly.
A hematoma (US spelling) or haematoma (UK spelling) is a localized collection of blood outside the blood vessels, due to either disease or trauma including injury or surgery and may involve blood continuing to seep from broken capillaries. A hematoma is initially in liquid form spread among the tissues including in sacs between tissues where it may coagulate and solidify before blood is reabsorbed into blood vessels. An ecchymosis is a hematoma of the skin larger than 10mm.
They may occur among/within many areas such as skin and other organs, connective tissues, bone, joints and muscle.
A collection of blood (or even a hemorrhage) may be aggravated by anticoagulant medication (blood thinner). Blood seepage and collection of blood may occur if heparin is given via an intramuscular route; to avoid this, heparin must be given intravenously or subcutaneously.
It is not to be confused with hemangioma, which is an abnormal buildup/growth of blood vessels in the skin or internal organs.
Some hematomas are visible under the surface of the skin (commonly called bruises) or possibly felt as masses/lumps. Lumps may be caused by the limitation of the blood to a sac, subcutaneous or intramuscular tissue space isolated by fascial planes. This is a key anatomical feature that helps prevent injuries from causing massive blood loss. In most cases the hematoma such as a sac of blood eventually dissolves; however, in some cases they may continue to grow such as due to blood seepage or show no change. If the sac of blood does not disappear, then it may need to be surgically cleaned out/repaired.
The slow process of reabsorption of hematomas can allow the broken down blood cells and hemoglobin pigment to move in the connective tissue. For example, a patient who injures the base of his thumb might cause a hematoma, which will slowly move all through the finger within a week. Gravity is the main determinant of this process.
Hematomas on articulations can reduce mobility of a member and present roughly the same symptoms as a fracture.
In most cases, movement and exercise of the affected muscle is the best way to introduce the collection back into the blood stream.
A mis-diagnosis of a hematoma in the vertebra can sometimes occur; this is correctly called a hemangioma (buildup of cells) or a benign tumor.
Subdural hematoma occurs when there is tearing of the bridging vein between the cerebral cortex and a draining venous sinus. At times they may be caused by arterial lacerations on the brain surface. Acute subdural hematomas are usually associated with cerebral cortex injury as well and hence the prognosis is not as good as extra dural hematomas. Clinical features depend on the site of injury and severity of injury. Patients may have a history of loss of consciousness but they recover and do not relapse. Clinical onset occurs over hours. A crescent shaped hemorrhage compressing the brain that does cross suture lines will be noted on CT of the head. Craniotomy and surgical evacuation is required if there is significant pressure effect on the brain.Complications include focal neurologic deficits depending on the site of hematoma and brain injury, increased intra cranial pressure leading to herniation of brain and ischemia due to reduced blood supply and seizures.
Hematomas can be subdivided by size. By definition, ecchymoses are 1 centimeter in size or larger, and are therefore larger than petechiae ( less than 2 millimeters in diameter) or purpura (2 millimeters to 1 centimeter in diameter). Ecchymoses also have a more diffuse border than other purpura.
Epidural hematoma (EDH) is a rapidly accumulating hematoma between the dura mater and the cranium. These patients have a history of head trauma with loss of consciousness, then a lucid period, followed by loss of consciousness. Clinical onset occurs over minutes to hours. Many of these injuries are associated with lacerations of the middle meningeal artery. A "lenticular", or convex, lens-shaped extracerebral hemorrhage that does not cross suture lines will likely be visible on a CT scan of the head. Although death is a potential complication, the prognosis is good when this injury is recognized and treated.
Symptoms may include visible discoloring (ecchymosis), breast pain, and swelling.
The symptoms may be similar to those of fibrocystic breast changes.
The primary symptom, hemorrhage, presents differently depending on the degree of injury, with the symptoms of major hemorrhage, shock, abdominal pain, and distention being clinically obvious. Minor hemorrhage often presents as upper left quadrant pain. Patients with unexplained left upper quadrant pain, particularly if there is evidence of hypovolemia or shock, are generally inquired regarding any recent trauma.
There are many causes of subcutaneous hematomas including ecchymoses. Coagulopathies such as Hemophilia A may cause ecchymosis formation in children. The medication betamethasone can have the adverse effect of causing echhymosis.
Epidural, subdural, and subarachnoid hemorrhages are extra-axial bleeds, occurring outside of the brain tissue, while intra-axial hemorrhages, including intraparenchymal and intraventricular hemorrhages, occur within it.
Epidural hematomas may present with a lucid period immediately following the trauma and a delay before symptoms become evident. After the epidural hematoma begins collecting, it starts to compress intracranial structures which may impinge on the CN III. This can be seen in the physical exam as a fixed and dilated pupil on the side of the injury. The eye will be positioned down and out, due to unopposed CN IV and CN VI innervation.
Other manifestations will include weakness of the extremities on the opposite side as the lesion (except in rare cases), due to compression of the crossed pyramid pathways, and a loss of visual field opposite to the side of the lesion, due to compression of the posterior cerebral artery on the side of the lesion.
The most feared event that takes place is tonsillar herniation which could result in respiratory arrest since the medullary structures are compromised. The trigeminal nerve (CN V) may be involved late in the process as the pons becomes compressed, but this is not a significant clinical presentation, since by that time the patient may already be dead. In the case of epidural hematoma in the posterior cranial fossa, the herniation is tonsillar and causes the Cushing's triad: hypertension, bradycardia, and irregular respiration.
Epidural bleeding is rapid because it is usually from arteries, which are high pressure. Epidural bleeds from arteries can grow until they reach their peak size at six to eight hours post injury, spilling from 25 to 75 cubic centimeters of blood into the intracranial space. As the hematoma expands, it strips the dura from the inside of the skull, causing an intense headache. Epidural bleeds can become large and raise intracranial pressure, causing the brain to shift, lose blood supply, or be crushed against the skull. Larger hematomas cause more damage. Epidural bleeds can quickly expand and compress the brain stem, causing unconsciousness, abnormal posturing, and abnormal pupil responses to light.
The primary concern in any splenic trauma is internal hemorrhage, though the exact amount of hemorrhage may be small or large, depending on the nature and degree of injury. Small or minor injuries often heal spontaneously, especially in children. Larger injuries hemorrhage extensively, often causing hemorrhagic shock. A splenic hematoma sometimes ruptures, usually in the first few days, although rupture can occur from hours to even months after injury.
A breast hematoma may appear due to direct trauma to the breast, for example from a sports injury or a road accident, for example a vehicle collision in which a seat belt injury occurs.
Hematoma can also be a consequence of breast surgery, usually due to post-operative bleeding. Bleeding may occur shortly after the intervention or a number of days later and can occur for cosmetic surgery (for example breast reduction or breast enhancement) and for non-cosmetic surgery (for example lymph node removal, lumpectomy, or mastectomy). More rarely, hematoma can result from breast biopsy.
Rarely, a breast hematoma can also occur spontaneously due to a rupture of blood vessels in the breast, especially in persons with coagulopathy or after long-term use of blood-thinning drugs such as aspirin or ibuprofen.
Epidural hematoma is when bleeding occurs between the tough outer membrane covering the brain and the skull. Often there is loss of consciousness following a head injury, a brief regaining of consciousness, and then loss of consciousness again. Other symptoms may include headache, confusion, vomiting, and an inability to move parts of the body. Complications may include seizures.
The cause is typically head injury that results in a break of the temporal bone and bleeding from the middle meningeal artery. Occasionally it can occur as a result of a bleeding disorder or blood vessel malformation. Diagnosis is typically by a CT scan or MRI. When this condition occurs in the spine it is known as a spinal epidural hematoma.
Treatment in generally by urgent surgery in the form of a craniotomy or burr hole. Without treatment death typically results. The condition occurs in one to four percent of head injuries. Typically it occurs in young adults. Males are more often affected than females.
The symptoms of a perianal hematoma can present over a short period of time. Pain, varying from mild to severe, will occur as the skin surrounding the rupture expands due to pressure. This pain will usually last even after the blood has clotted, and may continue for two to four days.
The anatomy of the epidural space is such that spinal epidural hematoma has a different presentation from intracranial epidural hematoma. In the spine, the epidural space contains loose fatty tissue and a network of large, thin-walled veins, referred to as the epidural venous plexus. The source of bleeding in spinal epidural hematoma is likely to be this venous plexus.
The diagnosis is generally a clinical one, with a fluctuant boggy mass developing over the scalp (especially over the occiput) with superficial skin bruising. The swelling develops gradually 12–72 hours after delivery, although it may be noted immediately after delivery in severe cases. The hematoma spreads across the whole calvaria as its growth is insidious and may not be recognized for hours. If enough blood accumulates a visible fluid wave may be seen. Patients can develop raccoon eyes.
Patients with subgaleal hematoma may present with hemorrhagic shock. The swelling may obscure the fontanel and cross suture lines (distinguishing it from cephalohematoma). Watch for significant hyperbilirubinemia. The long-term prognosis is generally good. Laboratory studies consist of a hematocrit evaluation.
The symptoms of a cerebral contusion (bruising on the brain) depend on the severity of the injury, ranging from minor to severe. Individuals may experience a headache; confusion; sleepiness; dizziness; loss of consciousness; nausea and vomiting; seizures; and difficulty with coordination and movement. They may also have difficulty with memory, vision, speech, hearing, managing emotions, and thinking. Signs depend on the contusion's location in the brain.
Patients with intraparenchymal bleeds have symptoms that correspond to the functions controlled by the area of the brain that is damaged by the bleed. Other symptoms include those that indicate a rise in intracranial pressure caused by a large mass putting pressure on the brain.
Intracerebral hemorrhages are often misdiagnosed as subarachnoid hemorrhages due to the similarity in symptoms and signs. A severe headache followed by vomiting is one of the more common symptoms of intracerebral hemorrhage. Another common symptom is a patient can collapse. Some people may experience continuous bleeding from the ear. Some patients may also go into a coma before the bleed is noticed.
Spinal epidural hematoma is bleeding into the epidural space in the spine. These may arise spontaneously (e.g. during childbirth), or as a rare complication of epiduralanaesthesia or of surgery (such as laminectomy). Symptoms usually include back pain which radiates to the arms or the legs. They may cause pressure on the spinal cord or cauda equina, which may present as pain, muscle weakness, or dysfunction of the bladder and bowel.
The best way to confirm the diagnosis is MRI. Risk factors include anatomical abnormalities and bleeding disorders.
Treatment is generally with emergency surgery. The risk following epidural anaesthesia is difficult to quantify; estimates vary from 1 per 10,000 to 1 per 100,000 epidural anaesthetics.
A rectus sheath hematoma is an accumulation of blood in the sheath of the rectus abdominis muscle. It causes abdominal pain with or without a mass.
The hematoma may be caused by either rupture of the epigastric artery or by a muscular tear. Causes of this include anticoagulation, coughing, pregnancy, abdominal surgery and trauma. With an ageing population and the widespread use of anticoagulant medications, there is evidence that this historically benign condition is becoming more common and more serious.
On abdominal examination, people may have a positive Carnett's sign.
Most hematomas resolve without treatment, but they may take several months to resolve.
Subgaleal hemorrhage or hematoma is bleeding in the potential space between the skull periosteum and the scalp galea aponeurosis.
Perianal hematoma are caused by the rupture of a small vein that drains blood from the anus. This rupture may be the result of forceful or strained bowel movement or caused by heavy lifting, coughing or straining. Once the rupture has formed, blood quickly pools within a few hours and, if left untreated, forms a clot.
Numerous small contusions from broken capillaries that occur in grey matter under the cortex are called multiple petechial hemorrhages or multifocal hemorrhagic contusion. Caused by shearing injuries at the time of impact, these contusions occur especially at the junction between grey and white matter and in the upper brain stem, basal ganglia, thalamus and areas near the third ventricle. The hemorrhages can occur as the result of brain herniation, which can cause arteries to tear and bleed. A type of diffuse brain injury, multiple petechial hemorrhages are not always visible using current imaging techniques like CT and MRI scans. This may be the case even if the injury is quite severe, though these may show up days after the injury. Hemorrhages may be larger than in normal contusions if the injury is quite severe. This type of injury has a poor prognosis if the patient is comatose, even with no apparent causes for the coma.
The presence of bruises may be seen in patients with platelet or coagulation disorders, or those who are being treated with an anticoagulant. Unexplained bruising may be a warning sign of child abuse, domestic abuse, or serious medical problems such as leukemia or meningoccocal infection. Unexplained bruising can also indicate internal bleeding or certain types of cancer. Long-term glucocorticoid therapy can cause easy bruising. Bruising present around the navel (belly button) with severe abdominal pain suggests acute pancreatitis. Connective tissue disorders such as Ehlers-Danlos syndrome may cause relatively easy or spontaneous bruising depending on the severity.
During an autopsy, bruises accompanying abrasions indicate the abrasions occurred while the individual was alive, as opposed to damage incurred post mortem.