Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pulmonary capillary hemangiomatosis (PCH) is a disease affecting the blood vessels of the lungs, where abnormal capillary proliferation and venous fibrous intimal thickening result in progressive increase in vascular resistance. It is a rare cause of pulmonary hypertension, and occurs predominantly in young adults. Together with pulmonary veno-occlusive disease, PCH comprises WHO Group I' causes for pulmonary hypertension. Indeed, there is some evidence to suggest that PCH and pulmonary veno-occlusive disease are different forms of a similar disease process.
Pulmonary capillary hemangiomatosis patients, families, and caregivers are encouraged to join the Registry NIH Rare Lung Diseases Consortium Contact Registry
The symptoms for pulmonary veno-occlusive disease are the following:
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension caused by progressive blockage of the small veins in the lungs. The blockage leads to high blood pressures in the arteries of the lungs, which, in turn, leads to heart failure. The disease is progressive and fatal, with median survival of about 2 years from the time of diagnosis to death. The definitive therapy is lung transplantation.
The signs and symptoms of PAP include shortness of breath, a cough, low grade fever, and weight loss.
The clinical course of PAP is unpredictable. Spontaneous remission is recognized, and some patients have stable symptoms. Death may occur due to the progression of PAP or of any underlying associated disease. Individuals with PAP are more vulnerable to lung infections such as bacterial pneumonia, mycobacterium avium-intracellulare infection, or a fungal infection.
The symptoms of pulmonary hypertension include the following:
Less common signs/symptoms include non-productive cough and exercise-induced nausea and vomiting. Coughing up of blood may occur in some patients, particularly those with specific subtypes of pulmonary hypertension such as heritable pulmonary arterial hypertension, Eisenmenger syndrome and chronic thromboembolic pulmonary hypertension. Pulmonary venous hypertension typically presents with shortness of breath while lying flat or sleeping (orthopnea or paroxysmal nocturnal dyspnea), while pulmonary arterial hypertension (PAH) typically does not.
Other typical signs of pulmonary hypertension include an accentuated pulmonary component of the second heart sound, a right ventricular third heart sound, and parasternal heave indicating a hypertrophied right atrium. Signs of systemic congestion resulting from right-sided heart failure include jugular venous distension, ascites, and hepatojugular reflux. Evidence of tricuspid insufficiency and pulmonic regurgitation is also sought and, if present, is consistent with the presence of pulmonary hypertension.
In many patients, symptoms are present for a considerable time before diagnosis. The most common clinical features of IPF include the following:
- Age over 50 years
- Dry, non-productive cough on exertion
- Progressive exertional dyspnea (shortness of breath with exercise)
- Dry, inspiratory bibasilar "velcro-like" crackles on auscultation (a crackling sound in the lungs during inhalation similar to Velcro being torn apart slowly, heard with a stethoscope).
- Clubbing of the digits, a disfigurement of the finger tips or toes (see image)
- Abnormal pulmonary function test results, with evidence of restriction and impaired gas exchange.
Some of these features are due to chronic hypoxemia (oxygen deficiency in the blood), are not specific for IPF, and can occur in other pulmonary disorders. IPF should be considered in all patients with unexplained chronic exertional dyspnea who present with cough, inspiratory bibasilar crackles, or finger clubbing.
Assessment of "velcro" crackles on lung auscultation is a practical way to improve the earlier diagnosis of IPF. Fine crackles are easily recognized by clinicians and are characteristic of IPF.
If bilateral fine crackles are present throughout the inspiratory time and are persisting after several deep breaths, and if remaining present on several occasions several weeks apart in a subject aged ≥60 years, this should raise the suspicion of IPF and lead to consideration of an HRCT scan of the chest which is more sensitive than a chest X-ray. As crackles are not specific for IPF, they must prompt a thorough diagnostic process.
Idiopathic pulmonary haemosiderosis (or idiopathic pulmonary hemosiderosis; IPH) is a lung disease of unknown cause that is characterized by alveolar capillary bleeding and accumulation of haemosiderin in the lungs. It is rare, with an incidence between 0.24 and 1.23 cases per million people.
Clinically, IPH manifests as a triad of haemoptysis, diffuse parenchymal infiltrates on chest radiographs, and iron deficiency anaemia. It is diagnosed at an average age of 4.5 plus or minus 3.5 years, and it is twice as common in females. The clinical course of IPH is exceedingly variable, and most of the patients continue to have episodes of pulmonary haemorrhage despite therapy. Death may occur suddenly from acute pulmonary haemorrhage or after progressive pulmonary insufficiency resulting in chronic respiratory failure.
Portopulmonary hypertension (PPH) is defined by the coexistence of portal and pulmonary hypertension. PPH is a serious complication of liver disease, present in 0.25 to 4% of all patients suffering from cirrhosis. Once an absolute contraindication to liver transplantation, it is no longer, thanks to rapid advances in the treatment of this condition. Today, PPH is comorbid in 4-6% of those referred for a liver transplant.
PPH presents roughly equally in male and female cirrhotics; 71% female in an American series and 57% male in a larger French series. Typically, patients present in their fifth decade, aged 49 +/- 11 years on average.
In general, PPH is diagnosed 4–7 years after the patient is diagnosed with portal hypertension and in roughly 65% of cases, the diagnosis is actually made at the time of invasive hemodynamic monitoring following anesthesia induction prior to liver transplantation.
Once patients are symptomatic, they present with right heart dysfunction secondary to pulmonary hypertension and its consequent dyspnea, fatigue, chest pain and syncope. Patients tend to have a poor cardiac status, with 60% having stage III-IV NYHA heart failure.
PPH is actually independent of the severity of cirrhosis but may be more common in specific types of cirrhosis, in one series more so in Autoimmune Hepatitis and less in Hepatitis C cirrhosis, while in another it was equally distributed throughout the diagnoses.
Pulmonary alveolar proteinosis (PAP) is a rare lung disease in which an abnormal accumulation of pulmonary surfactant occurs within the alveoli (microscopic air sacs in the lung), interfering with the lungs' ability to exchange oxygen from the air, and carbon dioxide from the blood. PAP can occur in a primary form or secondarily in the settings of certain cancers (such as myeloid leukemia), lung infections, or environmental exposure to dusts or chemicals. Rare familial forms have also been recognized, suggesting a genetic component in those cases.
Pulmonary edema, connective tissue diseases, asbestosis, lymphangitic carcinomatosis, lymphoma, lymphangioleiomyomatosis, drug-induced lung diseases
- Lymphadenopathy
Sarcoidosis, silicosis, berylliosis, lymphangitic carcinomatosis, lymphoma, lymphocytic interstitial pneumonia
Idiopathic pulmonary fibrosis (IPF) is a chronic irreversible and ultimately fatal disease characterized by a progressive decline in lung function. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This official statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was approved by the ATS board of directors, June 2013 and by the ERS Steering Committee, March 2013. "Am Respir Crit Care Med." 188 (6): 733–748. September 15, 2013. The term pulmonary fibrosis means scarring of lung tissue and is the cause of worsening dyspnea (shortness of breath). Fibrosis is usually associated with a poor prognosis.
IPF belongs to a large group of more than 200 lung diseases known as interstitial lung diseases (ILDs), characterized by the involvement of lung interstitium. The interstitium, the tissue between the air sacs in the lung, is the primary site of injury in ILDs. However, these disorders frequently affect not only the interstitium, but also the airspaces, peripheral airways, and vessels. Lung tissue from people with IPF shows a characteristic histopathologic pattern known as usual interstitial pneumonia (UIP). UIP is therefore the pathologic counterpart of IPF. The term 'idiopathic' is used because the cause of pulmonary fibrosis is still unknown. IPF usually occurs in adults of between 50 and 70 years of age, particularly those with a history of cigarette smoking, and affects more men than women. The diagnosis of IPF requires exclusion of other known causes of ILDs and the presence of a typical radiological pattern identified through high resolution computed tomography (HRCT). In the right clinical setting, it is possible to make the diagnosis of IPF by HRCT alone, obviating the need for surgical lung biopsy.
Treatment to slow down the progression of the disease may include nintedanib or pirfenidone.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
According to WHO classification there are 5 groups of PH, where Group I (pulmonary arterial hypertension) is further subdivided into Group I' and Group I" classes. The most recent WHO classification system (with adaptations from the more recent ESC/ERS guidelines shown in italics) can be summarized as follows:
WHO Group I – Pulmonary arterial hypertension (PAH)
- Idiopathic
- Heritable (BMPR2, ALK1, SMAD9, caveolin 1, KCNK3 mutations)
- Drug- and toxin-induced (e.g., methamphetamine use)
- Associated conditions:Connective tissue disease, HIV infection, Portal hypertension, Congenital heart diseases, Schistosomiasis
WHO Group I' – Pulmonary veno-occlusive disease (PVOD), pulmonary capillary hemangiomatosis (PCH)
- Idiopathic
- Heritable (EIF2AK4 mutations)
- Drugs, toxins and radiation-induced
- Associated conditions:connective tissue disease, HIV infection
WHO Group I" – Persistent pulmonary hypertension of the newborn
WHO Group II – Pulmonary hypertension secondary to left heart disease
- Left ventricular Systolic dysfunction
- Left ventricular Diastolic dysfunction
- Valvular heart disease
- Congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathy
- Congenital/acquired pulmonary venous stenosis
WHO Group III – Pulmonary hypertension due to lung disease, chronic hypoxia
- Chronic obstructive pulmonary disease (COPD)
- Interstitial lung disease
- Mixed restrictive and obstructive pattern pulmonary diseases
- Sleep-disordered breathing
- Alveolar hypoventilation disorders
- Chronic exposure to high altitude
- Developmental abnormalities
WHO Group IV – chronic arterial obstruction
- Chronic thromboembolic pulmonary hypertension (CTEPH)
- Other pulmonary artery obstructions
- Angiosarcoma or other tumor within the blood vessels
- Arteritis
- Congenital pulmonary artery stenosis
- Parasitic infection (hydatidosis)
WHO Group V – Pulmonary hypertension with unclear or multifactorial mechanisms
- Hematologic diseases: chronic hemolytic anemia (including sickle cell disease)
- Systemic diseases: sarcoidosis, pulmonary Langerhans cell histiocytosis: lymphangioleiomyomatosis, neurofibromatosis, vasculitis
- Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid diseases
- Others: pulmonary tumoral thrombotic microangiopathy, fibrosing mediastinitis, chronic kidney failure, segmental pulmonary hypertension (pulmonary hypertension restricted to one or more lobes of the lungs)
May have no signs and symptoms or they may include:
- cough, but not prominent;
- chest pain (not common);
- breathing difficulty (fast and shallow);
- low oxygen saturation;
- pleural effusion (transudate type);
- cyanosis (late sign);
- increased heart rate.
It is a common misconception that atelectasis causes fever. A study of 100 post-op patients followed with serial chest X-rays and temperature measurements showed that the incidence of fever decreased as the incidence of atelectasis increased. A recent review article summarizing the available published evidence on the association between atelectasis and post-op fever concluded that there is no clinical evidence supporting this doctrine.
Atelectasis may be an acute or chronic condition. In acute atelectasis, the lung has recently collapsed and is primarily notable only for airlessness. In chronic atelectasis, the affected area is often characterized by a complex mixture of airlessness, infection, widening of the bronchi (bronchiectasis), destruction, and scarring (fibrosis).
As with other forms of pulmonary edema, the hallmark of SIPE is a cough which may lead to frothy or blood-tinged sputum. Symptoms include:
- Shortness of breath out of proportion to effort being expended.
- Crackles, rattling or ‘junky’ feelings deep in the chest associated with breathing effort – usually progressively worsening with increasing shortness of breath and may be cause for a panic attack
- Cough, usually distressing and productive or not of a little pink, frothy or blood-tinged sputum (hemoptysis)
The wetsuit may feel as though it is hindering breathing ability.
Physiological and symptomatic changes often vary according to the altitude involved.
The Lake Louise Consensus Definition for High-Altitude Pulmonary Edema has set widely used criteria for defining HAPE symptoms:
Symptoms: at least two of:
- Difficulty in breathing (dyspnea) at rest
- Cough
- Weakness or decreased exercise performance
- Chest tightness or congestion
Signs: at least two of:
- Crackles or wheezing (while breathing) in at least one lung field
- Central cyanosis (blue skin color)
- Tachypnea (rapid shallow breathing)
- Tachycardia (rapid heart rate)
The initial cause of HAPE is a shortage of oxygen caused by the lower air pressure at high altitudes.
The mechanisms by which this oxygen shortage causes HAPE are poorly understood, but two processes are believed to be important:
1. Increased pulmonary arterial and capillary pressures (pulmonary hypertension) secondary to hypoxic pulmonary vasoconstriction.
2. An idiopathic non-inflammatory increase in the permeability of the vascular endothelium.
Although higher pulmonary arterial pressures are associated with the development of HAPE, the presence of pulmonary hypertension may not in itself be sufficient to explain the development of edema: severe pulmonary hypertension can exist in the absence of clinical HAPE in subjects at high altitude.
Alveolar capillary dysplasia (ACD, sometimes denoted ACDMPV when including misalignment of the pulmonary veins) is a type of diffuse developmental disorder of the lung. The other two diffuse developmental disorders are congenital acinar dysplasia and congenital alveolar dysplasia (CAD).
ACD or ACDMPV is the best studied diffuse developmental disorder. It is a very rare congenital malformation involving abnormal development of the capillary vascular system around the alveoli of the lungs. It is a rare cause of persistent pulmonary hypertension in infants. It also may be a rare cause of pulmonary hypoplasia.
Babies with ACD may appear normal at birth but within minutes or hours they develop respiratory distress with persistent pulmonary hypertension. ACD does not respond to standard therapies that resolve simple pulmonary hypertension. The lack of response is an important diagnostic clue.
High-altitude pulmonary edema (HAPE) ("HAPO" spelled oedema in British English) is a life-threatening form of non-cardiogenic pulmonary edema (fluid accumulation in the lungs) that occurs in otherwise healthy mountaineers at altitudes typically above . However, cases have also been reported at lower altitudes (between in highly vulnerable subjects), though what makes some people susceptible to HAPE is currently unknown. HAPE remains the major cause of death related to high-altitude exposure, with a high mortality rate in the absence of adequate emergency treatment.
Swimming induced pulmonary edema (SIPE), also known as immersion pulmonary edema, occurs when fluids from the blood leak abnormally from the small vessels of the lung (pulmonary capillaries) into the airspaces (alveoli).
SIPE usually occurs during exertion in conditions of water immersion, such as swimming and diving. With the recent surge in popularity of triathlons and swimming in open water events there has been an increasing incidence of SIPE. It has been reported in scuba divers, apnea (breath hold) free-diving competitors combat swimmers, and triathletes. The causes are incompletely understood at the present time.
Peripheral cyanosis is the blue tint in fingers or extremities, due to an inadequate or obstructed circulation. The blood reaching the extremities is not oxygen-rich and when viewed through the skin a combination of factors can lead to the appearance of a blue color. All factors contributing to central cyanosis can also cause peripheral symptoms to appear but peripheral cyanosis can be observed in the absence of heart or lung failures. Small blood vessels may be restricted and can be treated by increasing the normal oxygenation level of the blood.
Peripheral cyanosis may be due to the following causes:
- All common causes of central cyanosis
- Reduced cardiac output (e.g. heart failure or hypovolaemia)
- Cold exposure
- Chronic obstructive pulmonary disease (COPD)
- Arterial obstruction (e.g. peripheral vascular disease, Raynaud phenomenon)
- Venous obstruction (e.g. deep vein thrombosis)
It is often impossible to distinguish TRALI from adult respiratory distress syndrome. The typical presentation of TRALI is the sudden development of dyspnea, severe hypoxemia (O saturation <90% in room air), hypotension, and fever that develop within 6 hours after transfusion and usually resolve with supportive care within 48 to 96 hours. Although hypotension is considered one of the important signs in diagnosing TRALI, hypertension can occur in some cases.
ACD commonly is diagnosed postmortem, by a pathologist.
Sometimes ACD is diagnosed clinically. This is common when there is a family history of ACD, but rare otherwise. A clinical differential diagnosis of ACD excludes fetal atelectasis.
ACD is not detectable by prenatal imaging. However, some babies with ACD have associated congenital malformations that are detectable by imaging. The identification of genes involved in ACD offers the potential for prenatal testing and genetic counseling.