Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
The signs and symptoms of helminthiasis depend on a number of factors including: the site of the infestation within the body; the type of worm involved; the number of worms and their volume; the type of damage the infesting worms cause; and, the immunological response of the body. Where the burden of parasites in the body is light, there may be no symptoms.
Certain worms may cause particular constellations of symptoms. For instance, taeniasis can lead to seizures due to neurocysticercosis.
In extreme cases of intestinal infestation, the mass and volume of the worms may cause the outer layers of the intestinal wall, such as the muscular layer, to tear. This may lead to peritonitis, volvulus, and gangrene of the intestine.
The term "hookworm" is sometimes used to refer to hookworm infection. A hookworm is a type of parasitic worm (helminth).
There are no specific symptoms or signs of hookworm infection, but they give rise to a combination of intestinal inflammation and progressive iron-deficiency anemia and protein deficiency. Coughing, chest pain, wheezing, and fever will sometimes result from severe infection. Epigastric pains, indigestion, nausea, vomiting, constipation, and diarrhea can occur early or in later stages as well, although gastrointestinal symptoms tend to improve with time. Signs of advanced severe infection are those of anemia and protein deficiency, including emaciation, cardiac failure and abdominal distension with ascites.
Larval invasion of the skin (mostly in the Americas) can produce a skin disease called cutaneous larva migrans also known as "creeping eruption". The hosts of these worms are not human and the larvae can only penetrate the upper five layers of the skin, where they give rise to intense, local itching, usually on the foot or lower leg, known as "ground itch". This infection is due to larvae from the "A. Braziliense" hookworm. The larvae migrate in tortuous tunnels between the "stratum basale" and "stratum corneum" of the skin, causing serpiginous vesicular lesions. With advancing movement of the larvae, the rear portions of the lesions become dry and crusty. The lesions are typically intensely itchy.
Light infestations (<100 worms) frequently have no symptoms. Heavier infestations, especially in small children, can present gastrointestinal problems including abdominal pain and distension, bloody or mucus-filled diarrhea, and tenesmus (feeling of incomplete defecation, generally accompanied by involuntary straining). Mechanical damage to the intestinal mucosa may occur, as well as toxic or inflammatory damage to the intestines of the host. While appendicitis may be brought on by damage and edema of the adjacent tissue, if there are large numbers of worms or larvae present, it has been suggested that the embedding of the worms into the ileocecal region may also make the host susceptible to bacterial infection. A severe infection with high numbers of embedded worms in the rectum leads to edema, which can cause rectal prolapse, although this is typically only seen in small children. The prolapsed, inflamed and edematous rectal tissue may even show visible worms.
Growth retardation, weight loss, nutritional deficiencies, and anemia (due to long-standing blood loss) are also characteristic of infection, and these symptoms are more prevalent and severe in children. It does not commonly cause eosinophilia.
Coinfection of "T. trichiura" with other parasites is common and with larger worm burdens can cause both exacerbation of dangerous trichuriasis symptoms such as massive gastrointestinal bleeding (shown to be especially dramatic with coinfection with "Salmonella typhi") and exacerbation of symptoms and pathogenesis of the other parasitic infection (as is typical with coinfection with "Schistosoma mansoni", in which higher worm burden and liver egg burden is common). Parasitic coinfection with HIV/AIDS, tuberculosis, and malaria is also common, especially in Sub-saharan Africa, and helminth coinfection adversely affects the natural history and progression of HIV/AIDS, tuberculosis, and malaria and can increase clinical malaria severity. In a study performed in Senegal, infections of soil-transmitted helminths like "T. trichiura" (as well as schistosome infections independently) showed enhanced risk and increased the incidence of malaria.
Heavy infestations may have bloody diarrhea. Long-standing blood loss may lead to iron-deficiency anemia. Vitamin A deficiency may also result due to infection.
As larval stages travel through the body, they may cause visceral damage, peritonitis and inflammation, enlargement of the liver or spleen, and an inflammation of the lungs. Pulmonary manifestations take place during larval migration and may present as Loeffler's syndrome, a transient respiratory illness associated with blood eosinophilia and pulmonary infiltrates with radiographic shadowing.
The worms can occasionally cause intestinal blockage when large numbers get tangled into a bolus or they may migrate from the small intestine, which may require surgery. More than 796 "A. lumbricoides" worms weighing up to 550 g [19 ounces] were recovered at autopsy from a 2-year-old South African girl. The worms had caused torsion and gangrene of the ileum, which was interpreted as the cause of death.
Trichuriasis, also known as whipworm infection, is an infection by the parasitic worm "Trichuris trichiura" (whipworm). If infection is only with a few worms, there are often no symptoms. In those who are infected with many worms, there may be abdominal pain, tiredness and diarrhea. The diarrhea sometimes contains blood. Infections in children may cause poor intellectual and physical development. Low red blood cell levels may occur due to loss of blood.
The disease is usually spread when people eat food or drink water that contains the eggs of these worms. This may occur when contaminated vegetables are not fully cleaned or cooked. Often these eggs are in the soil in areas where people defecate outside and where untreated human feces is used as fertilizer. These eggs originate from the feces of infected people. Young children playing in such soil and putting their hands in their mouths also become infected easily. The worms live in the large bowel and are about four centimetres in length. Whipworm is diagnosed by seeing the eggs when examining the stool with a microscope. Eggs are barrel-shaped. Trichuriasis belongs to the group of soil-transmitted helminthiases.
Prevention is by properly cooking food and hand washing before cooking. Other measures include improving access to sanitation such as ensuring use of functional and clean toilets and access to clean water. In areas of the world where the infections are common, often entire groups of people will be treated all at once and on a regular basis. Treatment is with three days of the medication: albendazole, mebendazole or ivermectin. People often become infected again after treatment.
Whipworm infection affected about 464 million in 2015. It is most common in tropical countries. In the developing world, those infected with whipworm often also have hookworms and ascariasis infections. They have a large effect on the economy of many countries. Work is ongoing to develop a vaccine against the disease. Trichuriasis is classified as a neglected tropical disease.
Filariasis is a parasitic disease caused by an infection with roundworms of the Filarioidea type. These are spread by blood-feeding black flies and mosquitoes. This disease belongs to the group of diseases called helminthiases.
Eight known filarial nematodes use humans as their definitive hosts. These are divided into three groups according to the niche they occupy in the body:
- Lymphatic filariasis is caused by the worms "Wuchereria bancrofti", "Brugia malayi", and "Brugia timori". These worms occupy the lymphatic system, including the lymph nodes; in chronic cases, these worms lead to the syndrome of "elephantiasis".
- Subcutaneous filariasis is caused by "Loa loa" (the eye worm), "Mansonella streptocerca", and "Onchocerca volvulus". These worms occupy the subcutaneous layer of the skin, in the fat layer. "L. loa" causes "Loa loa" filariasis, while "O. volvulus" causes river blindness.
- Serous cavity filariasis is caused by the worms "Mansonella perstans" and "Mansonella ozzardi", which occupy the serous cavity of the abdomen. "Dirofilaria immitis", or the dog heartworm rarely infects humans.
The adult worms, which usually stay in one tissue, release early larval forms known as microfilariae into the host's bloodstream. These circulating microfilariae can be taken up with a blood meal by the arthropod vector; in the vector, they develop into infective larvae that can be transmitted to a new host.
Individuals infected by filarial worms may be described as either "microfilaraemic" or "amicrofilaraemic", depending on whether microfilariae can be found in their peripheral blood. Filariasis is diagnosed in microfilaraemic cases primarily through direct observation of microfilariae in the peripheral blood. Occult filariasis is diagnosed in amicrofilaraemic cases based on clinical observations and, in some cases, by finding a circulating antigen in the blood.
The most spectacular symptom of lymphatic filariasis is elephantiasis – edema with thickening of the skin and underlying tissues—which was the first disease discovered to be transmitted by mosquito bites. Elephantiasis results when the parasites lodge in the lymphatic system.
Elephantiasis affects mainly the lower extremities, while the ears, mucous membranes, and amputation stumps are affected less frequently. However, different species of filarial worms tend to affect different parts of the body; "Wuchereria bancrofti" can affect the legs, arms, vulva, breasts, and scrotum (causing hydrocele formation), while "Brugia timori" rarely affects the genitals. Those who develop the chronic stages of elephantiasis are usually free from microfilariae (amicrofilaraemic), and often have adverse immunological reactions to the microfilariae, as well as the adult worms.
The subcutaneous worms present with rashes, urticarial papules, and arthritis, as well as hyper- and hypopigmentation macules. "Onchocerca volvulus" manifests itself in the eyes, causing "river blindness" (onchocerciasis), one of the leading causes of blindness in the world. Serous cavity filariasis presents with symptoms similar to subcutaneous filariasis, in addition to abdominal pain, because these worms are also deep-tissue dwellers.
Neglected tropical diseases (NTDs) are a diverse group of tropical infections which are especially common in low-income populations in developing regions of Africa, Asia, and the Americas. They are caused by a variety of pathogens such as viruses, bacteria, protozoa and helminths. These diseases are contrasted with the big three diseases (HIV/AIDS, tuberculosis, and malaria), which generally receive greater treatment and research funding. In sub-Saharan Africa, the effect of these diseases as a group is comparable to malaria and tuberculosis. NTD co-infection can also make HIV/AIDS and tuberculosis more deadly.
In some cases, the treatments are relatively inexpensive. For example, the treatment for schistosomiasis is US$0.20 per child per year. Nevertheless, in 2010 it was estimated that control of neglected diseases would require funding of between US$2 billion and US$3 billion over the subsequent five to seven years. Some pharmaceutical companies have committed to donating all the drug therapies required, and mass drug administration (for example mass deworming) has been successfully accomplished in several countries. However, preventive measures are often more accessible in the developed world, but not universally available in poorer areas.
Within developed countries, neglected tropical diseases affect the very poorest in society. In the United States, there are up to 1.46 million families including 2.8 million children living on less than two dollars a day. In countries such as these, the burdens of neglected tropical diseases are often overshadowed by other public health issues. However, many of the same issues put populations at risk in developed as developing nations. For example, from poverty stem problems such as lack of adequate housing, thus exposing individuals to the vectors of these diseases.
Twenty neglected tropical diseases are prioritized by the World Health Organization (WHO), though other organizations define NTDs differently. Chromoblastomycosis and other deep mycoses, scabies and other ectoparasites and snakebite envenoming were added to the list in 2017. These diseases are common in 149 countries, affecting more than 1.4 billion people (including more than 500 million children) and costing developing economies billions of dollars every year. They resulted in 142,000 deaths in 2013—down from 204,000 deaths in 1990. Of these 20, two were targeted for eradication (dracunculiasis (guinea-worm disease) by 2015 and yaws by 2020), and four for elimination (blinding trachoma, human African trypanosomiasis, leprosy and lymphatic filariasis by 2020).
Lymphatic filariasis is also known as elephantiasis. There are approximately 120 million individuals infected and 40 million with deformities. Approximately two-thirds of cases are in Southwest Asia and one-third in Africa. Lymphatic filariasis is rarely fatal. Lymphatic filariasis has lifelong implications, such as lymphoedema of the limbs, genital disease, and painful recurrent attacks. Most people are asymptomatic, but have lymphatic damage. Up to 40 percent of infected individuals have kidney damage. It is a vector-borne disease, caused by nematode worms that are transmitted by mosquitoes.
It can be treated with cost-effective antihelminthic treatments, and washing skin can slow or even reverse damage. It is diagnosed with a finger-prick blood test.