Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FX that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation and bleeding during pregnancy and childbirth, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in muscles or joints, brain, gut, or urine
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FX deficiency symptoms typically show up in later life.
Symptoms may differ greatly, as apparently modifiers control to some degree the amount of FVII that is produced. Some affected individuals have few or no symptoms while others may experience life-threatening bleeding. Typically this bleeding disorder manifests itself as a tendency to easy bruising, nose bleeding, heavy and prolonged menstruation, and excessive bleeding after dental or surgical interventions. Newborns may bleed in the head, from the umbilicus, or excessively after circumcision. Other bleeding can be encountered in the gut, in muscles or joints, or the brain. Hematuria may occur.
While in congenital disease symptoms may be present at birth or show up later, in patients with acquired FVII deficiency symptoms typically show up in later life.
About 3-4% of patients with FVII deficiency may also experience thrombotic episodes.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
Factor VII deficiency is a bleeding disorder characterized by a lack in the production of Factor VII (FVII) (proconvertin), a protein that causes blood to clot in the coagulation cascade. After a trauma factor VII initiates the process of coagulation in conjunction with tissue factor (TF/factor III) in the extrinsic pathway.
The condition may be inherited or acquired. It is the most common of the rare congenital coagulation disorders.
Symptoms of enolase deficiency include exercise-induced myalgia and generalized muscle weakness and fatigability, both with onset in adulthood. Symptoms also include muscle pain without cramps, and decreased ability to sustain long term exercise.
Tetrahydrobiopterin deficiency (THBD, BHD), also called THB or BH deficiency, is a rare metabolic disorder that increases the blood levels of phenylalanine. Phenylalanine is an amino acid obtained through the diet. It is found in all proteins and in some artificial sweeteners. If tetrahydrobiopterin deficiency is not treated, excess phenylalanine can build up to harmful levels in the body, causing intellectual disability and other serious health problems.
High levels of phenylalanine are present from infancy in people with untreated tetrahydrobiopterin (THB, BH) deficiency. The resulting signs and symptoms range from mild to severe. Mild complications may include temporary low muscle tone. Severe complications include intellectual disability, movement disorders, difficulty swallowing, seizures, behavioral problems, progressive problems with development, and an inability to control body temperature.
It was first characterized in 1975.
A variety of neurological symptoms have been associated with carnosinemia. They include: hypotonia, developmental delay, mental retardation, degeneration of axons, sensory neuropathy, tremors, demyelinization, gray matter anomalies, myoclonic seizures, and loss of purkinje fibers.
Symptoms of the familial form include visual impairment caused by diffuse corneal opacities, target cell hemolytic anemia, and renal failure. Less common symptoms include atherosclerosis, hepatomegaly (enlarged liver), splenomegaly (enlarged spleen), and lymphadenopathy.
Fish-eye disease is less severe and most commonly presents with impaired vision due to corneal opacification. It rarely presents with other findings, although, atherosclerosis, hepatomegaly, splenomegaly, and lymphadenopathy can occur. Carlson and Philipson found that the disease was named so because the cornea of the eye was so opaque or cloudy with dots of cholesterol that it resembled a boiled fish.
If an individual only carry one copy of the mutated gene, they typically do not show symptoms.
Symptoms of congenital Type III Galactosemia are apparent from birth, but vary in severity depending on whether the peripheral or generalized disease form is present. Symptoms may include:
- Infantile jaundice
- Infantile hypotonia
- Dysmorphic features
- Sensorineural hearing loss
- Impaired growth
- Cognitive deficiencies
- Depletion of cerebellar Purkinje cells
- Ovarian failure (POI) and hypertrophic hypergonadism
- Liver failure
- Renal failure
- Splenomegaly
- Cataracts
Studies of Type III galactosemia symptoms are mostly descriptive, and precise pathogenic mechanisms remain unknown. This is largely due to a lack of functional animal models of classic galactosemia. The recent development of a "Drosophila melanogaster" GALE mutant exhibiting galactosemic symptoms may yield a promising future animal model.
Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. It is associated with "SLC35C1".
This disorder was discovered in two unrelated Israeli boys 3 and 5 years of age, each the offspring of consanguineous parents. Both had severe mental retardation, short stature, a distinctive facial appearance, and the Bombay (hh) blood phenotype, and both were secretor- and Lewis-negative. They both had had recurrent severe bacterial infections similar to those seen in patients with LAD1, including pneumonia, peridontitis, otitis media, and localized cellulitis. Similar to that in patients with LAD1, their infections were accompanied by pronounced leukocytosis (30,000 to 150,000/mm) but an absence of pus formation at sites of recurrent cellulitis. In vitro studies revealed a pronounced defect in neutrophil motility. Because the genes for the red blood cell H antigen and for the secretor status encode for distinct α1,2-fucosyltransferases and the synthesis of Sialyl-LewisX requires an α1,3-fucosyltransferase, it was postulated that a general defect in fucose metabolism is the basis for this disorder. It was subsequently found that GDP-L-fucose transport into Golgi vesicles was specifically impaired, and then missense mutations in the GDP-fucose transporter cDNA of three patients with LAD2 were discovered. Thus, GDP-fucose transporter deficiency is a cause of LAD2.
The common MTHFR deficiencies are usually asymptomatic, although the 677T variant can cause a mildly increased risk of some diseases.
For individuals homozygous in the 677T variant, there is a mildly elevated risk of thromboembolism (odds ratio 1.2), and stroke (odds ratio 1.26). There is also an elevated risk of neural tube defects among children of individuals with the C677T polymorphism (odds ratio 1.38).
For cardiovascular risk, common MTHFR deficiencies were once thought to be associated but meta-analyses indicate that correlation this was an artifact of publication bias.
There are various symptoms that are presented and are typically associated to a specific site that they appear at. Hypoprothrombinemia is characterized by a poor blood clotting function of prothrombin. Some symptoms are presented as severe, while others are mild, meaning that blood clotting is slower than normal. Areas that are usually affected are muscles, joints, and the brain, however, these sites are more uncommon.
The most common symptoms include:
1. Easy bruising
2. Oral mucosal bleeding - Bleeding of the membrane mucus lining inside of the mouth.
3. Soft tissue bleeding.
4. Hemarthrosis - Bleeding in joint spaces.
5. Epistaxis - Acute hemorrhages from areas of the nasal cavity, nostrils, or nasopharynx.
6. Women with this deficiency experience menorrhagia: prolonged, abnormal heavy menstrual bleeding. This is typically a symptom of the disorder when severe blood loss occurs.
Other reported symptoms that are related to the condition:
1. Prolonged periods of bleeding due to surgery, injury, or post birth.
2. Melena - Associated with acute gastrointestinal bleeding, dark black, tarry feces.
3. Hematochezia - Lower gastrointestinal bleeding, passage of fresh, bright red blood through the anus secreted in or with stools. If associated with upper gastrointestinal bleeding, suggestive of a more life-threatening issue.
Type I: Severe hemorrhages are indicators of a more severe prothrombin deficiency that account for muscle hematomas, intracranial bleeding, postoperative bleeding, and umbilical cord hemorrhage, which may also occur depending on the severity, respectively.
Type II: Symptoms are usually more capricious, but can include a variety of the symptoms described previously. Less severe cases of the disorder typically do not involve spontaneous bleeding.
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common genetic cause of elevated serum levels of homocysteine (hyperhomocysteinemia). It is caused by genetic defects in MTHFR, which is an important enzyme in the methyl cycle.
Common variants of MTHFR deficiency are asymptomatic and have only minor effects on disease risk. Severe variants (from nonsense mutations) are vanishingly rare.
Carnosinemia, also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency, is a rare autosomal recessive metabolic disorder caused by a deficiency of "carnosinase", a dipeptidase (a type of enzyme that splits dipeptides into their two amino acid constituents).
Carnosine is a dipeptide composed of beta-alanine and histidine, and is found in skeletal muscle and cells of the nervous system. This disorder results in an excess of carnosine in the urine, cerebrospinal fluid (CSF), blood and nervous tissue. Neurological disorders associated with a deficiency of carnosinase, and the resulting carnosinemia ("carnosine in the blood") are common.
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
Galactokinase deficiency, also known as Galactosemia type 2 or GALK deficiency, is an autosomal recessive metabolic disorder marked by an accumulation of galactose and galactitol secondary to the decreased conversion of galactose to galactose-1-phosphate by galactokinase. The disorder is caused by mutations in the GALK1 gene, located on chromosome 17q24. Galactokinase catalyzes the first step of galactose phosphorylation in the Leloir pathway of intermediate metabolism. Galactokinase deficiency is one of the three inborn errors of metabolism that lead to hypergalactosemia. The disorder is inherited as an autosomal recessive trait. Unlike classic galactosemia, which is caused by deficiency of galactose-1-phosphate uridyltransferase, galactokinase deficiency does not present with severe manifestations in early infancy. Its major clinical symptom is the development of cataracts during the first weeks or months of life, as a result of the accumulation, in the lens, of galactitol, a product of an alternative route of galactose utilization. The development of early cataracts in homozygous affected infants is fully preventable through early diagnosis and treatment with a galactose-restricted diet. Some studies have suggested that, depending on milk consumption later in life, heterozygous carriers of galactokinase deficiency may be prone to presenile cataracts at 20–50 years of age.
Lecithin cholesterol acyltransferase deficiency (LCAT deficiency) is a disorder of lipoprotein metabolism. The disease has two forms: Familial LCAT deficiency, in which there is complete LCAT deficiency, and Fish-eye disease, in which there is a partial deficiency.
Lecithin cholesterol acyltransferase catalyzes the formation of cholesterol esters in lipoproteins.
Hypoprothrombinemia is a rare blood disorder in which a deficiency in immunoreactive prothrombin (Factor II), produced in the liver, results in an impaired blood clotting reaction, leading to an increased physiological risk for spontaneous bleeding. This condition can be observed in the gastrointestinal system, cranial vault, and superficial integumentary system, effecting both the male and female population. Prothrombin is a critical protein that is involved in the process of hemostasis, as well as illustrating procoagulant activities. This condition is characterized as an autosomal recessive inheritance congenital coagulation disorder affecting 1 per 2,000,000 of the population, worldwide, but is also attributed as acquired.
Galactokinase deficiency is an autosomal recessive disorder, which means the defective gene responsible for the disorder is located on an autosome (chromosome 17 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Unlike galactose-1-phosphate uridyltransferase deficiency, the symptoms of galactokinase deficiency are relatively mild. The only known symptom in affected children is the formation of cataracts, due to production of galactitol in the lens of the eye. Cataracts can present as a failure to develop a social smile and failure to visually track moving objects.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
Arakawa's syndrome II is an autosomal dominant metabolic disorder that causes a deficiency of the enzyme tetrahydrofolate-methyltransferase; affected individuals cannot properly metabolize methylcobalamin, a type of Vitamin B.
It is also called Methionine synthase deficiency, Tetrahydrofolate-methyltransferase deficiency syndrome, and N5-methylhomocysteine transferase deficiency.
Symptoms of this disorder commonly appear between one and two years of age. Symptoms include mildly coarsened facial features, deafness, ichthyosis and an enlarged liver and spleen (hepatosplenomegaly). Abnormalities of the skeleton, such as a curving of the spine and breast bone may occur. The skin of individuals afflicted with this disorder, is typically dry. Children affected by this disorder develop more slowly than normal and may display delayed speech and walking skills.
The disease is fatal, with symptoms that include neurological damage and severe mental retardation. These sulfatase enzymes are responsible for breaking down and recycling complex sulfate-containing sugars from lipids and mucopolysaccharides within the lysosome. The accumulation of lipids and mucopolysaccharides inside the lysosome results in symptoms associated with this disorder. Worldwide, forty cases of Multiple Sulfatase Deficiency have been reported to date.