Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
MPS III is characterized by severe deterioration of the central nervous system, resulting in a variety of symptoms. Individuals with Sanfilippo syndrome usually start to show the symptoms between the age of 2 to 6. Speech problems, hyperactivity, aggressive behavior, developmental delays, hirsutism, sleep disturbances, seizures are the common manifestation of the syndrome at the initial stage. After the age of 10, patients start to experience increasingly severe symptoms including loss of motor and cognitive skills and somatic diseases. Patients later enter vegetative state, eventually leading to death in their 30s.
Individuals with MPS III tend to have mild skeletal abnormalities; osteonecrosis of the femoral head may be present in patients with the severe form. Optical nerve atrophy, deafness, otitis can be seen in moderate to severe individuals. Other characteristics include coarse facial features, thick lips, synophrys, and stiff joints. Chronic diarrhea, enlarged liver and spleen are also common.
It is difficult to clinically distinguish differences among the four types of Sanflippo syndrome. However, MPS IIIA is usually the most severe subtype, characterized by earliest onset, rapid clinical progression with severe symptoms, and short survival.
The condition is marked by progressive deterioration, hepatosplenomegaly, dwarfism, and unique facial features. A progressive mental retardation occurs, with death frequently occurring by the age of 10 years.
Developmental delay is evident by the end of the first year, and patients usually stop developing between ages 2 and 4. This is followed by progressive mental decline and loss of physical skills. Language may be limited due to hearing loss and an enlarged tongue. In time, the clear layers of the cornea become clouded and retinas may begin to degenerate. Carpal tunnel syndrome (or similar compression of nerves elsewhere in the body) and restricted joint movement are common.
Affected children may be large at birth and appear normal, but may have inguinal (in the groin) or umbilical (where the umbilical cord passes through the abdomen) hernias. Growth in height may be initially faster than normal, then begins to slow before the end of the first year and often ends around age 3. Many children develop a short body trunk and a maximum stature less than 4 feet. Distinct facial features (including flat face, depressed nasal bridge, and bulging forehead) become more evident in the second year. By age 2, the ribs have widened and are oar-shaped. The liver, spleen, and heart are often enlarged. Children may experience noisy breathing and recurring upper respiratory-tract and ear infections. Feeding may be difficult for some children, and many experience periodic bowel problems. Children with Hurler syndrome often die before age 10 from obstructive airway disease, respiratory infections, or cardiac complications.
Sanfilippo syndrome, or mucopolysaccharidosis III (MPS-III) is a rare autosomal recessive lysosomal storage disease. It is caused by a deficiency in one of the enzymes needed to break down the glycosaminoglycan heparan sulfate (which is found in the extra-cellular matrix and on cell surface glycoproteins).
Although undegraded heparan sulfate is the primary stored substrate, glycolipids such as gangliosides are also stored despite no genetic defect in the enzymes associated with their breakdown.
The condition is named for Sylvester Sanfilippo, the pediatrician who first described the disease.
The symptoms of Hunter syndrome (MPS II) are generally not apparent at birth, but usually start to become noticeable after the first year of life. Often, the first symptoms may include abdominal hernias, ear infections, runny noses, and colds. Since these symptoms are quite common among all infants, they are not likely to lead a doctor to make a diagnosis of Hunter syndrome right away. As the buildup of glycosaminoglycans (GAGs) continues throughout the cells of the body, signs of Hunter syndrome become more visible. Physical appearances of many children with Hunter syndrome include a distinctive coarseness in their facial features, including a prominent forehead, a nose with a flattened bridge, and an enlarged tongue. For this reason, unrelated children with Hunter syndrome often look alike. They may also have a large head, as well as an enlarged abdomen. Many continue to have frequent infections of the ears and respiratory tract.
The continued storage of GAGs in cells can lead to organs being affected in important ways. The thickening of the heart valves along with the walls of the heart can result in progressive decline in cardiac function. The walls of the airway may become thickened, as well, leading to breathing problems while sleeping (obstructive airway disease) and noisy breathing generally. People with Hunter syndrome may also have limited lung capacity due to pulmonary involvement. As the liver and spleen grow larger with time, the belly may become distended, making hernias more noticeable. All major joints (including the wrists, elbows, shoulders, hips, and knees) may be affected by Hunter syndrome, leading to joint stiffness and limited motion. Progressive involvement of the finger and thumb joints results in decreased ability to pick up small objects. The effects on other joints, such as hips and knees, can make walking normally increasingly difficult. If carpal tunnel syndrome develops, a common symptom even in young children with Hunter syndrome, a further decrease in hand function can occur. The bones themselves may be affected, resulting in short stature. In addition, pebbly, ivory-colored skin lesions may be found on the upper arms, legs, and upper back of some people with Hunter syndrome. The presence or absence of the skin lesions is not helpful, however, in predicting clinical severity in Hunter syndrome. Finally, the storage of GAGs in the brain can lead to delayed development with subsequent mental retardation and progressive loss of function. The rate and degree of progression is different for each person with Hunter syndrome.
Although Hunter syndrome is associated with a broad spectrum of clinical severity, two main forms can be recognized - severe and mild/attenuated. The differences between the severe and attenuated forms are due mainly to the progressive development of neurodegeneration in the severe form. Though the terms "attenuated" or "mild" are used by physicians in comparing people with Hunter syndrome, the effects of even mild disease are quite serious. Between the two main forms of disease, and even within them, two of the most significant areas of variability concern the degree of mental retardation and expected lifespan. Some people who have Hunter syndrome experience no mental handicaps and live into their 20s or 30s, with occasional reports of people who have lived into their 50s or 60s. Since the implementation of enzyme replacement therapy for Hunter syndrome, lifespans for those without mental handicaps are expected to lengthen since their physical disease appears to improve or stabilize with such treatment. The quality of life remains high in a large number of people, and many adults are actively employed.
In contrast, others with Hunter syndrome develop severe mental impairment and have life expectancies of 15 years or less, often due to neurodegeneration or physical complications from the disease. The age at onset of symptoms and the presence/absence of behavioral disturbances are predictive factors of ultimate disease severity in very young patients. Behavioral disturbances can often mimic combinations of symptoms of attention deficit hyperactivity disorder, autism, obsessive compulsive disorder, and/or sensory processing disorder, although the existence and level of symptoms differ in each affected child. They often also include a lack of an appropriate sense of danger, and aggression. The behavioral symptoms of Hunter syndrome generally precede neurodegeneration and often increase in severity until the mental handicaps become more pronounced.
The mucopolysaccharidoses share many clinical features but have varying degrees of severity. These features may not be apparent at birth but progress as storage of glycosaminoglycans affects bone, skeletal structure, connective tissues, and organs. Neurological complications may include damage to neurons (which send and receive signals throughout the body) as well as pain and impaired motor function. This results from compression of nerves or nerve roots in the spinal cord or in the peripheral nervous system, the part of the nervous system that connects the brain and spinal cord to sensory organs such as the eyes and to other organs, muscles, and tissues throughout the body.
Depending on the mucopolysaccharidosis subtype, affected individuals may have normal intellect or have cognitive impairments, may experience developmental delay, or may have severe behavioral problems. Many individuals have hearing loss, either conductive (in which pressure behind the eardrum causes fluid from the lining of the middle ear to build up and eventually congeal), neurosensory (in which tiny hair cells in the inner ear are damaged), or both. Communicating hydrocephalus—in which the normal reabsorption of cerebrospinal fluid is blocked and causes increased pressure inside the head—is common in some of the mucopolysaccharidoses. Surgically inserting a shunt into the brain can drain fluid. The eye's cornea often becomes cloudy from intracellular storage, and glaucoma and degeneration of the retina also may affect the patient's vision.
Physical symptoms generally include coarse or rough facial features (including a flat nasal bridge, thick lips, and enlarged mouth and tongue), short stature with disproportionately short trunk (dwarfism), dysplasia (abnormal bone size and/or shape) and other skeletal irregularities, thickened skin, enlarged organs such as liver (hepatomegaly) or spleen (splenomegaly), hernias, and excessive body hair growth. Short and often claw-like hands, progressive joint stiffness, and carpal tunnel syndrome can restrict hand mobility and function. Recurring respiratory infections are common, as are obstructive airway disease and obstructive sleep apnea. Many affected individuals also have heart disease, often involving enlarged or diseased heart valves.
Another lysosomal storage disease often confused with the mucopolysaccharidoses is mucolipidosis. In this disorder, excessive amounts of fatty materials known as lipids (another principal component of living cells) are stored, in addition to sugars. Persons with mucolipidosis may share some of the clinical features associated with the mucopolysaccharidoses (certain facial features, bony structure abnormalities, and damage to the brain), and increased amounts of the enzymes needed to break down the lipids are found in the blood.
MPS I is divided into three subtypes based on severity of symptoms. All three types result from an absence of, or insufficient levels of, the enzyme alpha-L-iduronidase. Children born to an MPS I parent carry the defective gene.
- MPS I H (also called Hurler syndrome or α-L-iduronidase deficiency), is the most severe of the MPS I subtypes. Developmental delay is evident by the end of the first year, and patients usually stop developing between ages 2 and 4. This is followed by progressive mental decline and loss of physical skills. Language may be limited due to hearing loss and an enlarged tongue. In time, the clear layers of the cornea become clouded and retinas may begin to degenerate. Carpal tunnel syndrome (or similar compression of nerves elsewhere in the body) and restricted joint movement are common.
- MPS I S, Scheie syndrome, is the mildest form of MPS I. Symptoms generally begin to appear after age 5, with diagnosis most commonly made after age 10. Children with Scheie syndrome have normal intelligence or may have mild learning disabilities; some may have psychiatric problems. Glaucoma, retinal degeneration, and clouded corneas may significantly impair vision. Other problems include carpal tunnel syndrome or other nerve compression, stiff joints, claw hands and deformed feet, a short neck, and aortic valve disease. Some affected individuals also have obstructive airway disease and sleep apnea. Persons with Scheie syndrome can live into adulthood.
- MPS I H-S, Hurler–Scheie syndrome, is less severe than Hurler syndrome alone. Symptoms generally begin between ages 3 and 8. Children may have moderate intellectual disability and learning difficulties. Skeletal and systemic irregularities include short stature, marked smallness in the jaws, progressive joint stiffness, compressed spinal cord, clouded corneas, hearing loss, heart disease, coarse facial features, and umbilical hernia. Respiratory problems, sleep apnea, and heart disease may develop in adolescence. Some persons with MPS I H-S need continuous positive airway pressure during sleep to ease breathing. Life expectancy is generally into the late teens or early twenties.
Although no studies have been done to determine the frequency of MPS I in the United States, studies in British Columbia estimate that 1 in 100,000 babies born has Hurler syndrome. The estimate for Scheie syndrome is one in 500,000 births and for Hurler-Scheie syndrome it is one in 115,000 births.
Hurler syndrome, also known as mucopolysaccharidosis type I (MPS I), Hurler's disease, also gargoylism, is a genetic disorder that results in the buildup of glycosaminoglycans (formerly known as mucopolysaccharides) due to a deficiency of alpha-L iduronidase, an enzyme responsible for the degradation of mucopolysaccharides in lysosomes. Without this enzyme, a buildup of heparan sulfate and dermatan sulfate occurs in the body. Symptoms appear during childhood and early death can occur due to organ damage.
MPS I is divided into three subtypes based on severity of symptoms. All three types result from an absence of, or insufficient levels of, the enzyme α-L-iduronidase. MPS I H or Hurler syndrome is the most severe of the MPS I subtypes. The other two types are MPS I S or Scheie syndrome and MPS I H-S or Hurler-Scheie syndrome.
Hurler syndrome is often classified as a lysosomal storage disease, and is clinically related to Hunter syndrome, which is X-linked, while Hurler syndrome is autosomal recessive.
It is named for Gertrud Hurler (1889–1965), a German pediatrician.
Symptoms of this disorder commonly appear between one and two years of age. Symptoms include mildly coarsened facial features, deafness, ichthyosis and an enlarged liver and spleen (hepatosplenomegaly). Abnormalities of the skeleton, such as a curving of the spine and breast bone may occur. The skin of individuals afflicted with this disorder, is typically dry. Children affected by this disorder develop more slowly than normal and may display delayed speech and walking skills.
The disease is fatal, with symptoms that include neurological damage and severe mental retardation. These sulfatase enzymes are responsible for breaking down and recycling complex sulfate-containing sugars from lipids and mucopolysaccharides within the lysosome. The accumulation of lipids and mucopolysaccharides inside the lysosome results in symptoms associated with this disorder. Worldwide, forty cases of Multiple Sulfatase Deficiency have been reported to date.
Hunter syndrome, or mucopolysaccharidosis II (MPS II), is a lysosomal storage disease caused by a deficient (or absent) enzyme, iduronate-2-sulfatase (I2S). The accumulated substrates in Hunter syndrome are heparan sulfate and dermatan sulfate. The syndrome has X-linked recessive inheritance.
Like many other genetic disorders that affect lipid metabolism, there are several forms of MLD, which are late infantile, juvenile, and adult.
- In the "late infantile form", which is the most common form of MLD (50–60%), affected children begin having difficulty walking after the first year of life, usually at 15–24 months. Symptoms include muscle wasting and weakness, muscle rigidity, developmental delays, progressive loss of vision leading to blindness, convulsions, impaired swallowing, paralysis, and dementia. Children may become comatose. Untreated, most children with this form of MLD die by age 5, often much sooner.
- Children with the "juvenile form" of MLD (onset between 3 and 10 years of age) usually begin with impaired school performance, mental deterioration, and dementia and then develop symptoms similar to the late infantile form but with slower progression. Age of death is variable, but normally within 10 to 15 years of symptom onset although some juveniles can live for several decades or longer after onset.
- The "adult form" commonly begins after age 16 often with an onset in the 4th or 5th decade of life and presents as a psychiatric disorder or progressive dementia. Adult-onset MLD usually progresses more slowly than the late infantile and juvenile forms, with a protracted course of a decade or more.
Palliative care can help with many of the symptoms and usually improves quality of life and longevity.
Carriers have low enzyme levels compared to their family population ("normal" levels vary from family to family) but even low enzyme levels are adequate to process the body's sulfatide.
The following signs are associated with the disease
- Abnormal heart development
- Abnormal skeletal development
- Hypermobile joints
- Large fingers
- Knock-knees
- Widely spaced teeth
- Bell-shaped chest (flared ribs)
- Compression of spinal cord
- Enlarged heart
- Dwarfism
- Heart murmur
- below average height for certain age
Patients with Morquio syndrome appear healthy at birth. They often present with spinal deformity, and there is growth retardation and possibly genu valgum in the second or third year of life. A patient with Morquio's syndrome is likely to die at an early age. Symptoms of the disease may include:
- Short stature and short neck (caused by flat vertebrae)
- Moderate kyphosis or scoliosis
- Mild pectus carinatum ("pigeon chest")
- Cervical spine: odontoid hypoplasia, atlanto-axial instability; may be associated with myelopathy with gradual loss of walking ability
- Joint laxity, mild dysostosis multiplex, dysplastic hips, large unstable knees, large elbows and wrists, and flat feet
- The combined abnormalities usually result in a duck-waddling gait
- Mid-face hypoplasia and mandibular protrusion
- Thin tooth enamel
- Corneal clouding
- Mild hepatosplenomegaly
Regarding the life span of people with Morquio, some can die as early as 2 or 3 years old, and some can live up to 60 or 70 years old. The oldest known person with Morquio syndrome type IV A was Kenneth D. Martin, who was born in Osage City, Kansas, USA and was 81 years old at the time of his death
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
Symptoms of early infantile GM1 (the most severe subtype, with onset shortly after birth) may include neurodegeneration, seizures, liver enlargement (hepatomegaly), spleen enlargement (splenomegaly), coarsening of facial features, skeletal irregularities, joint stiffness, distended abdomen, muscle weakness, exaggerated startle response to sound, and problems with gait.
About half of affected patients develop cherry-red spots in the eye.
Children may be deaf and blind by age 1 and often die by age 3 from cardiac complications or pneumonia.
- Autosomal recessive disorder; beta-galactosidase deficiency; neuronal storage of GM1 ganglioside and visceral storage of galactosyl oligosaccharides and keratan sulfate.
- Early psychomotor deterioration: decreased activity and lethargy in the first weeks; never sit; feeding problems - failure to thrive; visual failure (nystagmus noted) by 6 months; initial hypotonia; later spasticity with pyramidal signs; secondary microcephaly develops; decerebrate rigidity by 1 year and death by age 1–2 years (due to pneumonia and respiratory failure); some have hyperacusis.
- Macular cherry-red spots in 50% by 6–10 months; corneal opacities in some
- Facial dysmorphology: frontal bossing, wide nasal bridge, facial edema (puffy eyelids); peripheral edema, epicanthus, long upper lip, microretrognathia, gingival hypertrophy (thick alveolar ridges), macroglossia
- Hepatomegaly by 6 months and splenomegaly later; some have cardiac failure
- Skeletal deformities: flexion contractures noted by 3 months; early subperiosteal bone formation (may be present at birth); diaphyseal widening later; demineralization; thoracolumbar vertebral hypoplasia and beaking at age 3–6 months; kyphoscoliosis. *Dysostosis multiplex (as in the mucopolysaccharidoses)
- 10–80% of peripheral lymphocytes are vacuolated; foamy histiocytes in bone marrow; visceral mucopolysaccharide storage similar to that in Hurler disease; GM1 storage in cerebral gray matter is 10-fold elevated (20–50-fold increased in viscera)
- Galactose-containing oligosacchariduria and moderate keratan sulfaturia
- Morquio disease Type B: Mutations with higher residual beta-galactosidase activity for the GM1 substrate than for keratan sulfate and other galactose-containing oligosaccharides have minimal neurologic involvement but severe dysostosis resembling Morquio disease type A (Mucopolysaccharidosis type 4).
Multiple sulfatase deficiency (also known as "Austin disease", and "mucosulfatidosis") is a very rare autosomal recessive lysosomal storage disease caused by a deficiency in multiple sulfatase enzymes, or in formylglycine-generating enzyme, which activates sulfatases. It is similar to mucopolysaccharidosis.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
Morquio syndrome (referred to as mucopolysaccharidosis IV, MPS IV, Morquio-Brailsford syndrome, or Morquio) is a rare metabolic disorder in which the body cannot process certain types of mucopolysaccharides. This birth defect, which is autosomal recessive, is thus a lysosomal storage disorder that is usually inherited. In the US, the incidence rate for Morquio is estimated at between 1 in 200,000 and 1 in 300,000 live births.
The build-up or elimination of mucopolysaccharides, rather than processing by their usual biochemical pathways, causes various symptoms. These involve accumulation of keratan sulfate.
Metachromatic leukodystrophy (MLD, also called arylsulfatase A deficiency) is a lysosomal storage disease which is commonly listed in the family of leukodystrophies as well as among the sphingolipidoses as it affects the metabolism of sphingolipids. Leukodystrophies affect the growth and/or development of myelin, the fatty covering which acts as an insulator around nerve fibers throughout the central and peripheral nervous systems. MLD involves cerebroside sulfate accumulation. Metachromatic leukodystrophy, like most enzyme deficiencies, has an autosomal recessive inheritance pattern.
Some specific symptoms vary from one type of leukodystrophy to the next but the vast majority of symptoms are shared as the causes for the disease generally have the same effects. Symptoms are dependent on the age of onset, which is predominantly in infancy and early childhood, although the exact time of onset may be difficult to determine. Hyperirritability and hypersensitivity to the environment are common, as well as some tell-tale physical signs including muscle rigidity and a backwards-bent head. Botox therapy is often used to treat patients with spasticity. Juvenile and adult onsets display similar symptoms including a decrease or loss in hearing and vision. While children do experience optic and auditory degeneration, the course of the disease is usually too rapid, causing death relatively quickly, whereas adults may live with these conditions for many years. In children, spastic activity often precedes progressive ataxia and rapid cognitive deterioration which has been described as mental retardation. Epilepsy is commonplace for patients of all ages. More progressed patients show weakness in deglutition, leading to spastic coughing fits due to inhaled saliva. Classic symptomatic progression of juvenile x-linked adrenoleukodystrophy is shown in the 1992 film, "Lorenzo's Oil".
Course and timetable are dependent on the age of onset with infants showing a lifespan of 2–8 years, juveniles 2–10 years and adults typically 10+ years. Adults typically see an extended period of stability followed by a decline to a vegetative state and death. While treatments do exist, most are in the experimental phase and can only promise a halt in the progression of symptoms, although some gene therapies have shown some symptomatic improvement. The debilitating course of the disease has led to numerous philosophical and ethical arguments over experimental clinical trials, patients’ rights and physician-assisted suicide.
Children with Maroteaux–Lamy syndrome usually have normal intellectual development but share many of the physical symptoms found in Hurler syndrome. Caused by the deficient enzyme N-acetylgalactosamine 4-sulfatase, Maroteaux–Lamy syndrome has a variable spectrum of severe symptoms. Neurological complications include clouded corneas, deafness, thickening of the dura (the membrane that surrounds and protects the brain and spinal cord), and pain caused by compressed or traumatized nerves and nerve roots.
Signs are revealed early in the affected child's life, with one of the first symptoms often being a significantly prolonged age of learning how to walk. By age 10 children have developed a shortened trunk, crouched stance, and restricted joint movement. In more severe cases, children also develop a protruding abdomen and forward-curving spine. Skeletal changes (particularly in the pelvic region) are progressive and limit movement. Many children also have umbilical hernia or inguinal hernias. Nearly all children have some form of heart disease, usually involving valve dysfunction.
An enzyme replacement therapy, galsulfase (Naglazyme), was tested on patients with Maroteaux–Lamy syndrome and was successful in that it improved growth and joint movement. An experiment was then carried out to see whether an injection of the missing enzyme into the hips would help the range of motion and pain. At a cost of $365,000 a year, Naglazyme is one of the world's most expensive drugs.
Theoretically, a mutation in any of the may cause disease, but below are some notable ones, with short description of symptoms:
- Adrenoleukodystrophy; leads to progressive brain damage, failure of the adrenal glands and eventually death.
- Alport syndrome; glomerulonephritis, endstage kidney disease, and hearing loss.
- Androgen insensitivity syndrome; variable degrees of undervirilization and/or infertility in XY persons of either gender
- Barth syndrome; metabolism distortion, delayed motor skills, stamina deficiency, hypotonia, chronic fatigue, delayed growth, cardiomyopathy, and compromised immune system.
- Blue cone monochromacy; low vision acuity, color blindness, photophobia, infantile nystagmus.
- Centronuclear myopathy; where cell nuclei are abnormally located in skeletal muscle cells. In CNM the nuclei are located at a position in the center of the cell, instead of their normal location at the periphery.
- Charcot–Marie–Tooth disease (CMTX2-3); disorder of nerves (neuropathy) that is characterized by loss of muscle tissue and touch sensation, predominantly in the feet and legs but also in the hands and arms in the advanced stages of disease.
- Coffin–Lowry syndrome; severe mental retardation sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis as well as auditory and visual abnormalities.
- Fabry disease; A lysosomal storage disease causing anhidrosis, fatigue, angiokeratomas, burning extremity pain and ocular involvement.
- Hunter's Syndrome; potentially causing hearing loss, thickening of the heart valves leading to a decline in cardiac function, obstructive airway disease, sleep apnea, and enlargement of the liver and spleen.
- Hypohidrotic ectodermal dysplasia, presenting with hypohidrosis, hypotrichosis, hypodontia
- Kabuki syndrome; multiple congenital anomalies and mental retardation.
- Spinal and bulbar muscular atrophy; muscle cramps and progressive weakness
- Lesch-Nyhan syndrome; neurologic dysfunction, cognitive and behavioral disturbances including self-mutilation, and uric acid overproduction (hyperuricemia)
- Lowe Syndrome; hydrophthalmia, cataracts, intellectual disabilities, aminoaciduria, reduced renal ammonia production and vitamin D-resistant rickets
- Menkes disease; sparse and coarse hair, growth failure, and deterioration of the nervous system
- Nasodigitoacoustic syndrome; mishaped nose, brachydactyly of the distal phalanges, sensorineural deafness
- Nonsyndromic deafness; hearing loss
- Norrie disease; cataracts, leukocoria along with other developmental issues in the eye
- Occipital horn syndrome; deformations in the skeleton
- Ocular albinism; lack of pigmentation in the eye
- Ornithine transcarbamylase deficiency; developmental delay and mental retardation. Progressive liver damage, skin lesions, and brittle hair may also be seen
- Siderius X-linked mental retardation syndrome; cleft lip and palate with mental retardation and facial dysmorphism, caused by mutations in the histone demethylase PHF8
- Simpson-Golabi-Behmel syndrome; coarse faces with protruding jaw and tongue, widened nasal bridge, and upturned nasal tip
- Spinal muscular atrophy caused by UBE1 gene mutation; weakness due to loss of the motor neurons of the spinal cord and brainstem
- Wiskott-Aldrich syndrome; eczema, thrombocytopenia, immune deficiency, and bloody diarrhea
- X-linked Severe Combined Immunodeficiency (SCID); infections, usually causing death in the first years of life
- X-linked sideroblastic anemia; skin paleness, fatigue, dizziness and enlarged spleen and liver.
Lysosomal storage diseases (LSDs; ) are a group of about 50 rare inherited metabolic disorders that result from defects in lysosomal function. Lysosomes are sacs of enzymes within cells that digest large molecules and pass the fragments on to other parts of the cell for recycling. This process requires several critical enzymes. If one of these enzymes is defective, because of a mutation, the large molecules accumulate within the cell, eventually killing it.
Lysosomal storage disorders are caused by lysosomal dysfunction usually as a consequence of deficiency of a single enzyme required for the metabolism of lipids, glycoproteins (sugar-containing proteins), or so-called mucopolysaccharides. Individually, LSDs occur with incidences of less than 1:100,000; however, as a group, the incidence is about 1:5,000 - 1:10,000. Most of these disorders are autosomal recessively inherited such as Niemann–Pick disease, type C, but a few are X-linked recessively inherited, such as Fabry disease and Hunter syndrome (MPS II).
The lysosome is commonly referred to as the cell's recycling center because it processes unwanted material into substances that the cell can use. Lysosomes break down this unwanted matter by enzymes, highly specialized proteins essential for survival. Lysosomal disorders are usually triggered when a particular enzyme exists in too small an amount or is missing altogether. When this happens, substances accumulate in the cell. In other words, when the lysosome does not function normally, excess products destined for breakdown and recycling are stored in the cell.
Like other genetic disorders, individuals inherit lysosomal storage diseases from their parents. Although each disorder results from different gene mutations that translate into a deficiency in enzyme activity, they all share a common biochemical characteristic – all lysosomal disorders originate from an abnormal accumulation of substances inside the lysosome.
LSDs affect mostly children and they often die at a young and unpredictable age, many within a few months or years of birth. Many other children die of this disease following years of suffering from various symptoms of their particular disorder.
A lipid storage disorder (or lipidosis) can be any one of a group of inherited metabolic disorders in which harmful amounts of fats or lipids accumulate in some of the body’s cells and tissues. People with these disorders either do not produce enough of one of the enzymes needed to metabolize and break down lipids or they produce enzymes that do not work properly. Over time, this excessive storage of fats can cause permanent cellular and tissue damage, particularly in the brain, peripheral nervous system, liver, spleen and bone marrow.
Inside cells under normal conditions, lysosomes convert, or metabolize, lipids and proteins into smaller components to provide energy for the body.
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
Maroteaux–Lamy syndrome (also known as mucopolysaccharidosis type VI, MPS VI, or polydystrophic dwarfism) is a form of mucopolysaccharidosis caused by a deficiency in arylsulfatase B (ARSB). It is named after Pierre Maroteaux (1926–) and his mentor Maurice Emil Joseph Lamy (1895–1975), both French physicians.