Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The classic feature of gynecomastia is male breast enlargement with soft, compressible, and mobile subcutaneous chest tissue palpated under the areola of the nipple in contrast to softer fatty tissue. This enlargement may occur on one side or both. Dimpling of the skin and nipple retraction are not typical features of gynecomastia. Milky discharge from the nipple is also not a typical finding, but may be seen in a gynecomastic individual with a prolactin secreting tumor. An increase in the diameter of the areola and asymmetry of chest tissue are other possible signs of gynecomastia.
Males with gynecomastia may appear anxious or stressed due to concerns about the possibility of having breast cancer.
Gynecomastia is an endocrine system disorder in which there is a non-cancerous increase in the size of male breast tissue. Psychological distress may occur.
The development of gynecomastia is usually associated with benign pubertal changes. However, 75% of pubertal gynecomastia cases resolve within two years of onset without treatment. In rare cases, gynecomastia has been known to occur in association with certain disease states. The pathologic causes of gynecomastia are diverse and may include Klinefelter syndrome, certain cancers, endocrine disorders, metabolic dysfunction, various medications, or may occur due to a natural decline in testosterone production. Disturbances in the endocrine system that lead to an increase in the ratio of estrogens/androgens are thought to be responsible for the development of gynecomastia. This may occur even if the levels of estrogens and androgens are both appropriate but the ratio is altered. Diagnosis is based on signs and symptoms.
Conservative management of gynecomastia is often appropriate as the condition commonly resolves on its own. Medical treatment of gynecomastia that has persisted beyond two years is often ineffective. Medications such as aromatase inhibitors have been found to be effective in rare cases of gynecomastia from disorders such as aromatase excess syndrome or Peutz–Jeghers syndrome, but surgical removal of the excess tissue is usually required.
Gynecomastia is common. Physiologic gynecomastia develops in up to 70% of adolescent boys. Newborns and adolescent males often experience temporary gynecomastia due to the influence of maternal hormones and hormonal changes during puberty, respectively.
In women, a high blood level of prolactin often causes hypoestrogenism with anovulatory infertility and a decrease in menstruation. In some women, menstruation may disappear altogether (amenorrhoea). In others, menstruation may become irregular or menstrual flow may change. Women who are not pregnant or nursing may begin producing breast milk. Some women may experience a loss of libido (interest in sex) and breast pain, especially when prolactin levels begin to rise for the first time, as the hormone promotes tissue changes in the breast. Intercourse may become difficult or painful because of vaginal dryness.
In men, the most common symptoms of hyperprolactinaemia are decreased libido, sexual dysfunction (in both men and women), erectile dysfunction, infertility, and gynecomastia. Because men have no reliable indicator such as menstruation to signal a problem, many men with hyperprolactinaemia being caused by a pituitary adenoma may delay going to the doctor until they have headaches or eye problems caused by the enlarged pituitary pressing against the adjacent optic chiasm. They may not recognize a gradual loss of sexual function or libido. Only after treatment do some men realize they had a problem with sexual function.
Because of hypoestrogenism and hypoandrogenism, hyperprolactinaemia can lead to osteoporosis.
Symptoms of the condition in males consist of loss of libido, impotence, infertility, shrinkage of the testicles, penis, and prostate, diminished masculinization (e.g., decreased facial and body hair growth), low muscle mass, anxiety, depression, fatigue, vasomotor symptoms (hot flashes), insomnia, headaches, and osteoporosis. In addition, symptoms of hyperestrogenism, such as gynecomastia and feminization, may be concurrently present in males.
In females, hypoandrogenism consist of loss of libido, decreased body hair growth, depression, fatigue, vaginal vasocongestion (which can result in cramps), vasomotor symptoms (e.g., hot flashes and palpitations), insomnia, headaches, osteoporosis and reduced muscle mass. Symptoms of hypoestrogenism may be present in both sexes in cases of severe androgen deficiency (as estrogens are synthesized from androgens).
Signs of hyperestrogenism may include heightened levels of one or more of the estrogen sex hormones (usually estradiol and/or estrone), lowered levels of follicle-stimulating hormone and/or luteinizing hormone (due to suppression of the hypothalamic–pituitary–gonadal axis by estrogen), and lowered levels of androgens such as testosterone (generally only relevant to males). Symptoms of the condition in women may consist of menstrual irregularities, amenorrhea, abnormal vaginal bleeding, and enlargement of the uterus and breasts. It may also present as isosexual precocity in children and as hypogonadism, gynecomastia, feminization, impotence, and loss of libido in males. If left untreated, hyperestrogenism may increase the risk of estrogen-sensitive cancers such as breast cancer later in life.
Observed physiological abnormalities of the condition include a dramatic overexpression of aromatase and, accordingly, excessive levels of estrogens including estrone and estradiol and a very high rate of peripheral conversion of androgens to estrogens. In one study, cellular aromatase mRNA expression was found to be at least 10 times higher in a female patient compared to the control, and the estradiol/testosterone ratio after an injection of testosterone in a male patient was found to be 100 times greater than the control. Additionally, in another study, androstenedione, testosterone, and dihydrotestosterone (DHT) were found to be either low or normal in males, and follicle-stimulating hormone (FSH) levels were very low (likely due to suppression by estrogen, which has antigonadotropic effects as a form of negative feedback inhibition on sex steroid production in sufficiently high amounts), whereas luteinizing hormone (LH) levels were normal.
According to a recent review, estrone levels have been elevated in 17 of 18 patients (94%), while estradiol levels have been elevated only in 13 of 27 patients (48%). As such, estrone is the main estrogen elevated in the condition. In more than half of patients, circulating androstenedione and testosterone levels are low to subnormal. The ratio of circulating estradiol to testosterone is >10 in 75% of cases. FSH levels are said to be consistently low in the condition, while LH levels are in the low to normal range.
It is notable that gynecomastia has been observed in patients in whom estradiol levels are within the normal range. This has been suggested to be due to "in situ" conversion of adrenal androgens into estrone and then estradiol (via local 17β-HSD) in breast tissue (where aromatase activity may be particularly high).
The symptoms of AES, in males, include heterosexual precocity (precocious puberty with phenotypically-inappropriate secondary sexual characteristics; i.e., a fully or mostly feminized appearance), severe prepubertal or peripubertal gynecomastia (development of breasts in males before or around puberty), high-pitched voice, sparse facial hair, hypogonadism (dysfunctional gonads), oligozoospermia (low sperm count), small testes, micropenis (an ususually small penis), advanced bone maturation, an earlier peak height velocity (an accelerated rate of growth in regards to height), and short final stature due to early epiphyseal closure. The incidence of gynecomastia appears to be 100%, with 20 of 30 male cases opting for mastectomy according to a review.
In females, symptoms of AES include isosexual precocity (precocious puberty with phenotypically-appropriate secondary sexual characteristics), macromastia (excessively large breasts), an enlarged uterus, menstrual irregularities, and, similarly to males, accelerated bone maturation and short final height. Of seven females described in one report, three had macromastia (rate of ~43%). A 10-year-old girl with gigantomastia has subsequently also been described.
Fertility, though usually affected to one degree or another—especially in males—is not always impaired significantly enough to prevent sexual reproduction, as evidenced by vertical transmission of the condition by both sexes.
Hypoandrogenism is caused primarily by either dysfunction, failure, or absence of the gonads ("hypergonadotropic") or impairment of the hypothalamus or pituitary gland ("hypogonadotropic"), which in turn can be caused by a multitude of different stimuli, including genetic conditions (e.g., GnRH/gonadotropin insensitivity and enzymatic defects of steroidogenesis), tumors, trauma, surgery, autoimmunity, radiation, infections, toxins, drugs, and many others. Alternatively, it may be the result of conditions such as androgen insensitivity syndrome or hyperestrogenism. More simply, old age may also be a factor in the development of hypoandrogenism, as androgen levels decline with age.
Women with hypogonadism do not begin menstruating and it may affect their height and breast development. Onset in women after puberty causes cessation of menstruation, lowered libido, loss of body hair and hot flashes. In boys it causes impaired muscle and beard development and reduced height. In men it can cause reduced body hair and beard, enlarged breasts, loss of muscle, and sexual difficulties. A brain tumor (central hypogonadism) may involve headaches, impaired vision, milky discharge from the breast and symptoms caused by other hormone problems.
Hyperestrogenism, hyperestrogenic state, or estrogen excess, is a medical condition characterized by an excessive amount of estrogenic activity in the body.
The symptoms of hypogonadotrophic hypogonadism, a subtype of hypogonadism, include late, incomplete or lack of development at puberty, and sometimes short stature or the inability to smell; in females, a lack of breasts and menstrual periods, and in males a lack of sexual development, e.g., facial hair, penis and testes enlargement, deepening voice.
Aromatase excess syndrome (AES or AEXS), also sometimes referred to as familial hyperestrogenism or familial gynecomastia, is a rare genetic and endocrine syndrome which is characterized by an overexpression of aromatase, the enzyme responsible for the biosynthesis of the estrogen sex hormones from the androgens, in turn resulting in excessive levels of circulating estrogens and, accordingly, symptoms of hyperestrogenism. It affects both sexes, manifesting itself in males as marked or complete phenotypical feminization (with the exception of the genitalia; i.e., no pseudohermaphroditism) and in females as hyperfeminization.
To date, 30 males and 8 females with AES among 15 and 7 families, respectively, have been described in the medical literature.
Hyperprolactinaemia or hyperprolactinemia is the presence of abnormally high levels of prolactin in the blood. Normal levels are less than 500 mIU/L [20 ng/mL or µg/L] for women, and less than 450 mIU/L for men.
Prolactin is a peptide hormone produced by the anterior pituitary gland that is primarily associated with lactation and plays a vital role in breast development during pregnancy. Hyperprolactinaemia may cause galactorrhea (production and spontaneous flow of breast milk) and disruptions in the normal menstrual period in women and hypogonadism, infertility and erectile dysfunction in men.
Hyperprolactinaemia can also be a part of normal body changes during pregnancy and breastfeeding. It can also be caused by diseases affecting the hypothalamus and pituitary gland. It can also be caused by disruption of the normal regulation of prolactin levels by drugs, medicinal herbs and heavy metals inside the body. Hyperprolactinaemia may also be the result of disease of other organs such as the liver, kidneys, ovaries and thyroid.
Adipomastia, or lipomastia, also known colloquially as fatty breasts, is a condition defined as an excess of skin and adipose tissue in the breasts without true breast glandular tissue. It is commonly present in men with obesity, and is particularly apparent in men who have undergone massive weight loss. A related/synonymous term is pseudogynecomastia. The condition is different and should be distinguished from gynecomastia ("women's breasts"), which involves true glandular breast development in a male. The two conditions can usually be distinguished easily by palpation to check for the presence of glandular tissue. Another difference between the conditions is that breast pain/tenderness does not occur in pseudogynecomastia. Sometimes, gynecomastia and pseudogynecomastia are present together; this is related to the fact that fat tissue expresses aromatase, the enzyme responsible for the synthesis of estrogen, and estrogen is produced to a disproportionate extent in men with excessive amounts of fat, resulting in simultaneous glandular enlargement.
Breast atrophy is the normal or spontaneous atrophy or shrinkage of the breasts.
Breast atrophy commonly occurs in women during menopause when estrogen levels decrease. It can also be caused by hypoestrogenism and/or hyperandrogenism in women in general, such as in antiestrogen treatment for breast cancer, in polycystic ovary syndrome (PCOS), and in malnutrition such as that associated with eating disorders like anorexia nervosa or with chronic disease. It can also be an effect of weight loss.
In the treatment of gynecomastia in males and macromastia in women, and in hormone replacement therapy (HRT) for trans men, breast atrophy may be a desired effect.
Examples of treatment options for breast atrophy, depending on the situation/when appropriate, can include estrogens, antiandrogens, and proper nutrition or weight gain.
The symptoms of isolated 17,20-lyase deficiency, in males, include pseudohermaphroditism (i.e., feminized, ambiguous, or mildly underdeveloped (e.g., micropenis, perineal hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), female gender identity, and, in non-complete cases of deficiency where partial virilization occurs, gynecomastia up to Tanner stage V (due to low androgen levels, which results in a lack of suppression of estrogen); in females, amenorrhoea or, in cases of only partial deficiency, merely irregular menses, and enlarged cystic ovaries (due to excessive stimulation by high levels of gonadotropins); and in both sexes, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent adrenarche and puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
Individuals with mild (or minimal) androgen insensitivity syndrome (grade 1 on the Quigley scale) are born phenotypically male, with fully masculinized genitalia; this category of androgen insensitivity is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to impair virilization or spermatogenesis, but is not great enough to impair normal male genital development. MAIS is the mildest and least known form of androgen insensitivity syndrome.
The existence of a variant of androgen insensitivity that solely affected spermatogenesis was theoretical at first. Cases of phenotypically normal males with isolated spermatogenic defect due to AR mutation were first detected as the result of male infertility evaluations. Until then, early evidence in support of the existence of MAIS was limited to cases involving a mild defect in virilization, although some of these early cases made allowances for some degree of impairment of genital masculinization, such as hypospadias or micropenis. It is estimated that 2-3% of infertile men have AR gene mutations.
Examples of MAIS phenotypes include isolated infertility (oligospermia or azoospermia), mild gynecomastia in young adulthood, decreased secondary terminal hair, high pitched voice, or minor hypospadias repair in childhood. The external male genitalia (penis, scrotum, and urethra) are otherwise normal in individuals with MAIS. Internal genitalia, including Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) and the prostate, is also normal, although the bitesticular volume of infertile men (both with and without MAIS) is diminished; male infertility is associated with reduced bitesticular volume, varicocele, retractile testes, low ejaculate volume, male accessory gland infections (MAGI), and mumps orchitis. The incidence of these features in infertile men with MAIS is similar to that of infertile men without MAIS. MAIS is not associated with Müllerian remnants.
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a severe neurodegenerative syndrome that is associated with a particular mutation of the androgen receptor's polyglutamine tract called a trinucleotide repeat expansion. SBMA results when the length of the polyglutamine tract exceeds 40 repetitions.
Although technically a variant of MAIS, SBMA's presentation is not typical of androgen insensitivity; symptoms do not occur until adulthood and include neuromuscular defects as well as signs of androgen inaction. Neuromuscular symptoms include progressive proximal muscle weakness, atrophy, and fasciculations. Symptoms of androgen insensitivity experienced by men with SBMA are also progressive and include testicular atrophy, severe oligospermia or azoospermia, gynecomastia, and feminized skin changes despite elevated androgen levels. Disease onset, which usually affects the proximal musculature first, occurs in the third to fifth decades of life, and is often preceded by muscular cramps on exertion, tremor of the hands, and elevated muscle creatine kinase. SBMA is often misdiagnosed as amyotrophic lateral sclerosis (ALS) (also known as Lou Gehrig's disease).
The symptoms of SBMA are thought to be brought about by two simultaneous pathways involving the toxic misfolding of proteins and loss of AR functionality. The polyglutamine tract in affected pedigrees tends to increase in length over generations, a phenomenon known as "anticipation", leading to an increase in the severity of the disease as well as a decrease in the age of onset for each subsequent generation of a family affected by SBMA.
Estrogen insensitivity syndrome (EIS), or estrogen resistance, is a form of congenital estrogen deficiency or hypoestrogenism which is caused by a defective estrogen receptor (ER) – specifically, the estrogen receptor alpha (ERα) – that results in an inability of estrogen to mediate its biological effects in the body. Congenital estrogen deficiency can alternatively be caused by a defect in aromatase, the enzyme responsible for the biosynthesis of estrogens, a condition which is referred to as aromatase deficiency and is similar in symptomatology to EIS.
EIS is an extremely rare occurrence. As of 2016, there have been three published reports of EIS, involving a total of five individuals. The reports include a male case published in 1994, a female case published in 2013, and a familial case involving two sisters and a brother which was published in 2016.
EIS is analogous to androgen insensitivity syndrome (AIS), a condition in which the androgen receptor (AR) is defective and insensitive to androgens, such as testosterone and dihydrotestosterone (DHT). The functional opposite of EIS is hyperestrogenism, for instance that seen in aromatase excess syndrome.
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
A few cases of photosensitivity (hypersensitivity to ultraviolet light-induced skin redness and/or lesions) associated with bicalutamide have been reported. In one of the cases, bicalutamide was continued due to effectiveness in treating prostate cancer in the patient, and in combination with strict photoprotection (in the form of avoidance/prevention of ultraviolet light exposure), the symptoms disappeared and did not recur. Flutamide is also associated with photosensitivity, but much more frequently in comparison to bicalutamide.
In 1994, a 28-year-old man with EIS was reported. He was fully masculinized. At 204 cm, he had tall stature. His epiphyses were unfused, and there was evidence of still-occurring slow linear growth (for comparison, his height at 16 years of age was 178 cm). He also had markedly delayed skeletal maturation (bone age 15 years), a severely undermineralized skeleton, evidence of increased bone resorption, and very early-onset osteoporosis. The genitalia, testes, and prostate of the patient were all normal and of normal size/volume. The sperm count of the patient was normal (25 million/mL; normal, >20 million/mL), but his sperm viability was low (18%; normal, >50%), indicating some degree of infertility. The patient also had early-onset temporal hair loss. He reported no history of gender identity disorder, considered himself to have strong heterosexual interests, and had normal sexual function, including morning erections and nocturnal emissions.
Follicle-stimulating hormone and luteinizing hormone levels were considerably elevated (30–33 mIU/mL and 34–37 mIU/mL, respectively) and estradiol and estrone levels were markedly elevated (145 pg/mL and 119–272 pg/mL, respectively), while testosterone levels were normal (445 ng/dL). Sex hormone-binding globulin levels were mildly elevated (6.0–10.0 nmol/L), while thyroxine-binding globulin, corticosteroid-binding globulin, and prolactin levels were all normal. Osteocalcin and bone-specific alkaline phosphatase levels were both substantially elevated (18.7–21.6 ng/mL and 33.3–35.9 ng/mL, respectively).
Treatment with up to extremely high doses of ethinylestradiol (fourteen 100-µg patches per week) had no effect on any of his symptoms of hypoestrogenism, did not produce any estrogenic effects such as gynecomastia, and had no effect on any of his physiological parameters (e.g., hormone levels or bone parameters), suggesting a profile of complete estrogen insensitivity syndrome.
A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995. The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of increasingly feminized genitalia that lie in the interim. Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent. The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.
Partial androgen insensitivity syndrome is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to partially prevent the masculinization of the genitalia, but is not great enough to completely prevent genital masculinization. This includes any phenotype resulting from androgen insensitivity where the genitalia is partially, but not completely masculinized. Genital ambiguities are frequently detected during clinical examination at birth, and consequently, a PAIS diagnosis can be made during infancy as part of a differential diagnostic workup.
Pubertal undervirilization is common, including gynecomastia, decreased secondary terminal hair, and / or a high pitched voice. The phallic structure ranges from a penis with varying degrees of diminished size and hypospadias to a slightly enlarged clitoris. Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) are typically partially or fully developed. The prostate is typically small or impalpable. Müllerian remnants are rare, but have been reported.
The gonads in individuals with PAIS are testes, regardless of phenotype; during the embryonic stage of development, testes form in an androgen-independent process that occurs due to the influence of the SRY gene on the Y chromosome. Cryptorchidism is common, and carries with it a 50% risk of germ cell malignancy. If the testes are located intrascrotally, there may still be significant risk of germ cell malignancy; studies have not yet been published to assess this risk.
Predominantly male phenotypes vary in the degree of genital undermasculinization to include micropenis, chordee, scrotum, and / or pseudovaginal perineoscrotal hypospadias. Impotence may be fairly common, depending on phenotypic features; in one study of 15 males with PAIS, 80% of those interviewed indicated that they had some degree of impotence. Anejaculation appears to occur somewhat independently of impotence; some men are still able to ejaculate despite impotence, and others without erectile difficulties cannot. Predominantly female phenotypes include a variable degree of labial fusion and clitoromegaly. Ambiguous phenotypic states include a phallic structure that is intermediate between a clitoris and a penis, and a single perineal orifice that connects to both the urethra and the vagina (i.e. urogenital sinus). At birth, it may not be possible to immediately differentiate the external genitalia of individuals with PAIS as being either male or female, although the majority of individuals with PAIS are raised male.
Given the wide diversity of phenotypes associated with PAIS, the diagnosis is often further specified by assessing genital masculinization. Grades 2 through 5 of the Quigley scale quantify four degrees of increasingly feminized genitalia that correspond to PAIS.
Grade 2, the mildest form of PAIS, presents with a predominantly male phenotype that presents with minor signs of undermasculinized genitalia, such as isolated hypospadias, which can be severe. Hypospadias may manifest with a partially formed channel from the urethral opening to the glans. Until recently, it was thought that isolated micropenis was not a manifestation of PAIS. However, in 2010, two cases of PAIS manifesting with isolated micropenis were documented.
Grade 3, the most common phenotypic form of PAIS, features a predominantly male phenotype that is more severely undermasculinized, and typically presents with micropenis and pseudovaginal perineoscrotal hypospadias with scrotum.
Grade 4 presents with a gender ambiguous phenotype, including a phallic structure that is intermediate between a clitoris and a penis. The urethra typically opens into a common channel with the vagina (i.e. urogenital sinus).
Grade 5, the form of PAIS with the greatest degree of androgen insensitivity, presents with a mostly female phenotype, including separate urethral and vaginal orifices, but also shows signs of slight masculinization including mild clitoromegaly and / or partial labial fusion.
Previously, it was erroneously thought that individuals with PAIS were always infertile; at least one case report has been published that describes fertile men that fit the criteria for grade 2 PAIS (micropenis, penile hypospadias, and gynecomastia).
All forms of androgen insensitivity are associated with infertility, though exceptions have been reported for both the mild and partial forms.
PAIS is associated with a 50% risk of germ cell malignancy when the testes are undescended. If the testes are located intrascrotally, there may still be significant risk of germ cell malignancy; studies have not yet been published to assess this risk. Some men with PAIS may experience sexual dysfunction including impotence and anejaculation. A few AR mutations that cause PAIS are also associated with prostate and breast cancers.
Vaginal hypoplasia, a relatively frequent finding in CAIS and some forms of PAIS, is associated with sexual difficulties including vaginal penetration difficulties and dyspareunia.
At least one study indicates that individuals with an intersex condition may be more prone to psychological difficulties, due at least in part to parental attitudes and behaviors, and concludes that preventative long-term psychological counseling for parents as well as for affected individuals should be initiated at the time of diagnosis.
Lifespan is not thought to be affected by AIS.
An estrogen-dependent condition, disease, disorder, or syndrome, is a medical condition that is, in part or full, dependent on, or is sensitive to, the presence of estrogenic activity in the body.
Known estrogen-dependent conditions include mastodynia (breast pain/tenderness), breast fibroids, mammoplasia (breast enlargement), macromastia (breast hypertrophy), gynecomastia, breast cancer, precocious puberty in girls, melasma, menorrhagia, endometriosis, endometrial hyperplasia, adenomyosis, uterine fibroids, uterine cancers (e.g., endometrial cancer), ovarian cancer, and hyperestrogenism in males such as in certain conditions like cirrhosis and Klinefelter's syndrome.
Such conditions may be treated with drugs with antiestrogen actions, including selective estrogen receptor modulators (SERMs) such as tamoxifen and clomifene, estrogen receptor antagonists such as fulvestrant, aromatase inhibitors such as anastrozole and exemestane, gonadotropin-releasing hormone (GnRH) analogues such as leuprolide and cetrorelix, and/or other antigonadotropins such as danazol, gestrinone, megestrol acetate, and medroxyprogesterone acetate.
This article is about the side effect profile of bicalutamide, a nonsteroidal antiandrogen (NSAA), including its frequent and rare side effects.