Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Griscelli syndrome type 3 is a disorder of melanosome transport presenting initially with hypopigmentation.
EEM syndrome exhibits a combination of prominent symptoms and features. These include: ectodermal dysplasia (systemic malformations of ectodermal tissues), ectrodactyly ("lobster claw" deformity in the hands and feet), macular dystrophy (a progressive eye disease), syndactyly (webbed fingers or toes), hypotrichosis (a type of hair-loss), and dental abnormalities (hypodontia).
Elejalde syndrome (also known as Griscelli syndrome type 1) is an extremely rare autosomal recessive syndrome (only around 10 cases known) consisting of moderate pigment dilution, profound primary neurologic defects, no immune defects, and hair with metallic silvery sheen.
It is associated with MYO5A.
Griscelli syndrome is a rare autosomal recessive disorder characterized by albinism (hypopigmentation) with immunodeficiency, that usually causes death by early childhood.
This syndrome consists a number of typical features. These include
- Agenesis of the corpus callosum (80-99% patients)
- Hypopigmentation of the eyes and hair (80-99% patients)
- Cardiomyopathy (80-99% patients)
- Combined immunodeficiency (80-99% patients)
- Muscular hypotonia (80-99% patients)
- Abnormality of retinal pigmentation (80-99% patients)
- Recurrent chest infections (80-99% patients)
- Abnormal EEG (80-99% patients)
- Intellectual disability (80-99% patients)
- Cataracts (75%)
- Seizures (65%)
- Renal abnormalities (15%)
Infections of the gastrointestinal and urinary tracts are common. Swallowing and feeding difficulties early on may result in a failure to thrive. Optic nerve hypoplasia, nystagmus and photophobia may occur. Facial dysmorphism (cleft lip/palate and micrognathia) and syndactyly may be present. Sensorineural hearing loss may also be present.
Death in infancy is not uncommon and is usually due to cardiac complications or severe infections.
Griscelli syndrome is defined by the characteristic hypopigmentation, with frequent pyogenic infection, enlargement of the liver and spleen, a low blood neutrophil level, low blood platelet level, and immunodeficiency. Very often there is also impaired natural killer cell activity, absent delayed-type hypersensitivity and a poor cell proliferation response to antigenic challenge. This may be caused by the loss of three different genes, each of which has different additional effects, resulting in three types of syndrome. Its inheritance is autosomal recessive.
Examination of the hair in this syndrome may be useful. Under light microscopy, these hairs exhibit bigger and irregular melanin granules, distributed mainly near the medulla. Under polarized light microscopy, the hairs appear monotonously white.
EEM syndrome (or Ectodermal dysplasia, Ectrodactyly and Macular dystrophy syndrome) is an autosomal recessive congenital malformation disorder affecting tissues associated with the ectoderm (skin, hair, nails, teeth), and also the hands, feet and eyes.
MPS VII, Sly syndrome, one of the least common forms of the mucopolysaccharidoses, is estimated to occur in fewer than one in 250,000 births. The disorder is caused by deficiency of the enzyme beta-glucuronidase. In its rarest form, Sly syndrome causes children to be born with hydrops fetalis, in which extreme amounts of fluid are retained in the body. Survival is usually a few months or less. Most children with Sly syndrome are less severely affected. Neurological symptoms may include mild to moderate intellectual disability by age 3, communicating hydrocephalus, nerve entrapment, corneal clouding, and some loss of peripheral and night vision. Other symptoms include short stature, some skeletal irregularities, joint stiffness and restricted movement, and umbilical and/or inguinal hernias. Some patients may have repeated bouts of pneumonia during their first years of life. Most children with Sly syndrome live into the teenage or young adult years.
Children with MPS VI, Maroteaux–Lamy syndrome, usually have normal intellectual development but share many of the physical symptoms found in Hurler syndrome. Caused by the deficient enzyme N-acetylgalactosamine 4-sulfatase, Maroteaux-Lamy syndrome has a variable spectrum of severe symptoms. Neurological complications include clouded corneas, deafness, thickening of the dura (the membrane that surrounds and protects the brain and spinal cord), and pain caused by compressed or traumatized nerves and nerve roots.
Growth is normal at first but stops suddenly around age 8. By age 10 children have developed a shortened trunk, crouched stance, and restricted joint movement. In more severe cases, children also develop a protruding abdomen and forward-curving spine. Skeletal changes (particularly in the pelvic region) are progressive and limit movement. Many children also have umbilical or inguinal hernias. Nearly all children have some form of heart disease,
An enzyme replacement therapy was tested on patients with MPS VI and was successful in that it improved growth and joint movement. An experiment was then carried out to see whether an injection of the missing enzyme into the hips would help the range of motion and pain.
Affected males develop generalized reticular hyper pigmentation in early childhood.
Hair often looks bedraggled or brushed backwards, hanging low on the forehead.
Among the associated extracutaneous manifestations are described:
- Respiratory infections
- Dyskeratosis corneal photophobia
- Hypohidrosis with large deficit of thermoregulation
- Growth retardation
- Gastrointestinal disorders
- Kidney disease
- Kidney stones
- Urinary infections
- Webbed feet or hands
- Electrolyte imbalance
- Retinitis pigmentosa
- Lymphoedema
- Thyroid abnormalities
Each patient shows some of the symptoms listed above. Not every sick person will show all of the listed symptoms.
In females the disease is characterized by skin rashes linear hyper pigmentation following the Blaschko's lines, morphologically similar to stage 3 pigment incontinence. There are no systemic manifestations associated with XLPDR in females.
Symptoms for Alström syndrome generally appear during infancy with great variability in age. Some of the symptoms include:
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.
- Light sensitivity and vision problems (Cone-rod dystrophy) in all cases, usually within 15 months of birth and progressively worsening until about 20 years of age
- Delays in early, developmental milestones in 50% of cases, learning disabilities in about 30% of cases
- Obesity in 100% of cases, apparent by 5 years of age, but often apparent in infancy (Alström infants usually have normal birth weights, and by adolescence, weights tend to be in the high-normal to normal range)
- Nystagmus (usually affects the children) one of the first symptoms to occur which causes involuntary rapid eye movement.
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.(chronic)
- Mild to moderate bilateral sensorineural hearing loss.
- Type 2 diabetes usually occurs in early childhood.
- Hyperinsulinemia/ insulin resistance—development of high level of insulin in blood.
- Steatosis (fatty liver) and elevated transaminases (liver enzymes) often develop in childhood and can progress in some patients to cirrhosis and liver failure.
- Endocrine dysfunctions may occur where the patient may experience an under or over active thyroid gland, weak growth hormone, increased androgen in females, and low testosterone in males.
- Slowly progressive kidney failure can occur in the second to fourth decade of life.
This includes Ataxia-telegiectasia, Chédiak-Higashi syndrome, DiGeorge syndrome, Griscelli syndrome and Marinesco-Sjogren syndrome.
The brain is abnormally smooth, with fewer folds and grooves. The face, especially in children, has distinct characteristics including a short nose with upturned nares, thickened upper lip with a thin vermilion upper border, frontal bossing, small jaw, low-set posteriorily rotated ears, sunken appearance in the middle of the face, widely spaced eyes, and hypertelorism. The forehead is prominent with bitemporal hollowing.
Characteristics that are not visual include mental retardation, pre- and postnatal growth retardation, epilepsy, and reduced lifespan.
Failure to thrive, feeding difficulties, seizures and decreased spontaneous activity are often seen. Death usually occurs in infancy and childhood.
Multiple abnormalities of the brain, kidneys, and gastrointestinal tract (the stomach and intestines) may occur.
Hyper-IgM syndrome type 3 is a form of Hyper IgM syndrome characterized by mutations of the "CD40" gene. In this type, Immature B cells cannot receive signal 2 from helper T cells which is necessary to mature into mature B cells.
The symptoms of Freeman–Sheldon syndrome include drooping of the upper eyelids, strabismus, low-set ears, a long philtrum, gradual hearing loss, scoliosis, and walking difficulties. Gastroesophageal reflux has been noted during infancy, but usually improves with age. The tongue may be small, and the limited movement of the soft palate may cause nasal speech. Often there is an H- or Y-shaped dimpling of the skin over the chin.
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
Bart syndrome is a genetic disorder characterized by the association of congenital localized absence of skin, epidermolysis bullosa, lesions of the mouth mucosa, and dystrophic nails.
X-linked reticulate pigmentary disorder (also known as "familial cutaneous amyloidosis", "Partington amyloidosis", "Partington cutaneous amyloidosis", "Partington syndrome type II", "reticulate pigmentary disorder", and "X-linked reticulate pigmentary disorder with systemic manifestations") is a cutaneous condition that has been described in adult women that had linear streaks of hyperpigmentation and in which male patients manifested a reticulated mottled brown pigmentation of the skin, which, on biopsy, demonstrated dermal deposits of amyloid.
The syndrome is also referred with the acronym X-Linked-PDR or even XLPRD.It's a very rare disease, genetically determined, with a chronic course.
It was characterized in 1981. Mutation of the "POLA1" gene leads to loss of expression of the catalytic subunit of DNA polymerase-α and is responsible for XLPDR. Loss of POLA1 expression results in reduced levels of RNA:DNA hybrids in the cytosol and unexpectedly triggers aberrant immune responses (e.g. type I interferon production) which at least in part can account for the symptoms associated with XLPDR.
Alström syndrome, also called Alstrom-Halgren syndrome, is a rare genetic disorder caused by mutations in the gene ALMS1. It is among the rarest genetic disorders in the world, as currently it has only 266 reported cases in medical literature and over 501 known cases in 47 countries. It was first described by Carl-Henry Alström in Sweden in 1959. Alstrom syndrome is sometimes confused with Bardet-Biedl syndrome, which has similar symptoms. Bardet-Biedl syndrome tends to have later onset in its symptoms. The likelihood of two carrier parents both passing the gene and therefore having a child affected by the syndrome is 25% with each pregnancy. The likelihood of having a child who is only a carrier of the gene is 50% with each pregnancy. The likelihood of a child receiving normal genes from both parents and being considered to be "genetically" normal is 25%. The risk for carrying the gene is equivalent for both males and females.
"Alström syndrome (AS) is a rare autosomal recessive disease characterized by multiorgan dysfunction. The key features are childhood obesity, blindness due to congenital retinal dystrophy, and sensorineural hearing loss. Associated endocrinologic features include hyperinsulinemia, early-onset type 2 diabetes, and hypertriglyceridemia."
Thus, AS shares several features with the common metabolic syndrome, namely obesity, hyperinsulinemia, and hypertriglyceridemia. Mutations in the ALMS1 gene have been found to be causative for AS with a total of 79 disease-causing mutations having been described." Prevalence estimates have ranged from 1 in 10,000 to fewer than 1 in 1,000,000 individuals in the general population.
Patients with Sack–Barabas syndrome have thin, fragile skin, especially in the chest and abdomen, that bruises easily; hands and feet may have an aged appearance. Skin is soft but not overly stretchy.
Facial features are often distinctive, including protruding eyes, a thin nose and lips, sunken cheeks, and a small chin.
Other signs of the disorder include hypermobility of joints, tearing of tendons and muscles, painfully swollen veins in the legs, lung collapse, and slow wound healing following injury or surgery.
Infants with the condition may be born with hip dislocations and clubfeet.
Unpredictable ruptures of arteries and organs are serious complications of SBS. Ruptured arteries can cause internal bleeding, stroke, or shock, the most common cause of death in patients with this disorder.
Rupture of the intestine is seen in 25 to 30 percent of affected individuals and tearing of the uterus during pregnancy affects 2 to 3 percent of women. Although these symptoms are rare in childhood, more than 80 percent of patients experience severe complications by the age of 40. Teenage boys are at high risk for arterial rupture, often being fatal.
Freeman–Sheldon syndrome (FSS), also termed distal arthrogryposis type 2A (DA2A), craniocarpotarsal dysplasia (or dystrophy), Cranio-carpo-tarsal syndrome, Windmill-Vane-Hand syndrome, or Whistling-face syndrome, was originally described by Freeman and Sheldon in 1938. Freeman–Sheldon syndrome is a rare form of multiple congenital contracture (MCC) syndromes (arthrogryposes) and is the most severe form of distal arthrogryposis (DA).
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
The characteristic symptom of Costeff syndrome is the onset of progressively worsening eyesight caused by degeneration of the optic nerve (optic atrophy) within the first few years of childhood, with the majority of affected individuals also developing motor disabilities later in childhood. Occasionally, people with Costeff syndrome may also experience mild cognitive disability.
It is type of 3-methylglutaconic aciduria, the hallmark of which is an increased level in the urinary concentrations of 3-methylglutaconic acid and 3-methylglutaric acid; this can allow diagnosis as early as at one year of age.
Those with Costeff syndrome typically experience the first symptoms of visual deterioration within the first few years of childhood, which manifests as the onset of progressively decreasing visual acuity. This decrease tends to continue with age, even after childhood.
The majority of people with Costeff syndrome develop movement problems and motor disabilities later in childhood, the two most significant of which are choreoathetosis and spasticity. The former causes involuntary erratic, jerky, and twisting movements (see chorea and athetosis), whereas the latter causes twitches and spastic tendencies.
These two symptoms are often severe enough to seriously disable an individual; among 36 people with Costeff syndrome, 17 experienced major motor disability as a result of choreoathetosis, and 12 experienced spasticity-related symptoms severe enough to do the same.
Ataxia (loss of muscle coordination) and speech impairment caused by dysarthria also occur in roughly 50% of cases, but are rarely seriously disabling.
Some individuals with Costeff disease also display mild cognitive impairment, though such cases are relatively infrequent.