Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Subcortical heterotopia form as distinct nodes in the white matter, "focal" indicating specific area. In general, patients present fixed neurologic deficits and develop partial epilepsy between the ages of 6 and 10. The more extensive the subcortical heterotopia, the greater the deficit; bilateral heterotopia are almost invariably associated with severe developmental delay or mental retardation. The cortex itself often suffers from an absence of gray matter and may be unusually thin or lack deep sulci. Subependymal heterotopia are frequently accompanied by other structural abnormalities, including an overall decrease in cortical mass. Patients with focal subcortical heterotopia have a variable motor and intellectual disturbance depending on the size and site of the heterotopion.
The diagnosis of PMG is merely descriptive and is not a disease in itself, nor does it describe the underlying cause of the brain malformation.
Polymicrogyria may be just one piece of a syndrome of developmental abnormalities, because children born with it may suffer from a wide spectrum of other problems, including global developmental disabilities, mild to severe mental retardation, motor dysfunctions including speech and swallowing problems, respiratory problems, and seizures. Though it is difficult to make a predictable prognosis for children with the diagnosis of PMG, there are some generalized clinical findings according to the areas of the brain that are affected.
- Bilateral frontal polymicrogyria (BFP) – Cognitive and motor delay, spastic quadriparesis, epilepsy
- Bilateral frontoparietal polymicrogyria (BFPP) – Severe cognitive and motor delay, seizures, dysconjugate gaze, cerebellar dysfunction
- Bilateral perisylvian polymicrogyria (BPP) – Pseudobulbar signs, cognitive impairment, epilepsy, some with arthrogryposis or lower motor neuron disease
- Bilateral parasagittal parieto-occipital polymicrogyria (BPPP) – Partial seizures, some with mental retardation
- Bilateral generalized polymicrogyria (BGP) – Cognitive and motor delay of variable severity, seizures
The region in which unilateral polymicrogyria occurs has been generalized into different cortical areas. Features associated with this form of polymicrogyria are similar to the other forms and include spastic hemiparesis, mental retardation in variable degrees, and seizures. The features depend on the exact area and extent to which polymicrogyria has affected the cortex. Patients who have unilateral polymicrogyria have been reported to also have electrical status epilepticus during sleep (EPES), and all suffered from seizures.
Periventricular means beside the ventricle, while subependymal (also spelled subepydymal) means beneath the ependyma; because the ependyma is the thin epithelial sheet lining the ventricles of the brain, these two terms are used to define heterotopia occurring directly next to a ventricle. This is by far the most common location for heterotopia. Patients with isolated subependymal heterotopia usually present with a seizure disorder in the second decade of life.
Subependymal heterotopia present in a wide array of variations. They can be a small single node or a large number of nodes, can exist on either or both sides of the brain at any point along the higher ventricle margins, can be small or large, single or multiple, and can form a small node or a large wavy or curved mass.
Symptomatic women with subependymal heterotopia typically present with partial epilepsy during the second decade of life; development and neurologic examinations up to that point are typically normal. Symptoms in men with subependymal heterotopia vary, depending on whether their disease is linked to their X-chromosome. Men with the X-linked form more commonly have associated anomalies, which can be neurological or more widespread, and they usually suffer from developmental problems. Otherwise (i.e., in non-X-linked cases) the symptomology is similar in both genders.
Various degrees of intensity and locations of epilepsy are associated with malformations of cortical development. Researchers suggest that approximately 40% of children diagnosed with drug-resistant epilepsy have some degree of cortical malformation.
Lissencephaly (to which pachygyria is most closely linked) is associated with severe mental retardation, epilepsy, and motor disability. Two characteristics of lissencephaly include its absence of convolutions (agyria) and decreased presence of convolutions (pachygyria). The types of seizures associated with lissencephaly include:
- persisting spasms
- focal seizures
- tonic seizures
- atypical seizures
- atonic seizures
Other possible symptoms of lissencephaly include telecanthus, estropia, hypertelorism, varying levels of mental retardation, cerebellar hypoplasia, corpus callosum aplasia, and decreased muscle tone and tendon reflexes. Over 90% of children affected with lissencephaly have seizures.
Patients with subcortical band heterotopia (another disorder associated with pachygyria) typically have milder symptoms and their cognitive function is closely linked to the thickness of the subcortical band and the degree of pachygyria present.
Pachygyria (from the Greek "pachy" meaning "thick" or "fat" gyri) is a congenital malformation of the cerebral hemisphere. It results in unusually thick convolutions of the cerebral cortex. Typically, children have developmental delay and seizures, the onset and severity depending on the severity of the cortical malformation. Infantile spasms are common in affected children, as is intractable epilepsy.
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
There are different tests or methods used to determine GPR56 expression or visuals of the brain to analyze the specific sections that are affected. These tests for example, using animals such as mice, RNAi, Behavioral assay, Electron microscopy, CT scan, or MRI demonstrate different results that concludes an affected BFPP patient. MRI's reveal either irregularity to the cortical surface suggestive of multiple small folds or an irregular, scalloped appearance of the gray matter-white matter junction.
Neuroimaging The diagnosis of polymicrogyria is typically made by magnetic resonance imaging (MRI) since computed tomography (CT) and other imaging methods generally do not have high enough resolution or adequate contrast to identify the small folds that define the condition. The cerebral cortex often appears abnormally thick as well because the multiple small gyri are fused, infolded, and superimposed in appearance.
Neuropathology Gross neuropathologic examination reveals a pattern of complex convolutions to the cerebral cortex, with miniature gyri fused and superimposed together, often resulting in an irregular brain surface. The cortical ribbon can appear excessively thick as a result of the infolding and fusion of multiple small gyri.
Microscopic examination demonstrates that the cerebral cortex is in fact abnormally thin and has abnormal lamination; typically the cortex is unlayered or has four layers, in contrast to the normal six layers. The most superficial layers between adjacent small gyri appear fused, with the pia (layer of the meninges) bridging across multiple gyri. Prenatal diagnosis for BFPP is also available for pregnancies at risk if the GPR56 mutations have been identified in an affected family member.
BFPP is a cobblestone-like cortical malformation of the brain. Disruptions of cerebral cortical development due to abnormal neuronal migration and positioning usually lead to cortical disorders, which includes cobblestone lissencephaly. Cobblestone lissencephaly is typically seen in three different human congenital muscular dystrophy syndromes: Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and muscle-eye-brain disease. In cobblestone lissencephaly, the brain surface actually has a bumpy contour caused by the presence of collections of misplaced neurons and glial cells that have migrated beyond the normal surface boundaries of the brain. Sometimes regions populated by these misplaced cells have caused a radiologic misdiagnosis of polymicrogyria. However, the presence of other abnormalities in these cobblestone lissencephaly syndromes, including ocular anomalies, congenital muscular dystrophy, ventriculomegaly, and cerebellar dysplasia, usually distinguishes these disorders from polymicrogyria. There are no anatomopathologic studies that have characterized the pattern of cortical laminar alterations in patients with GPR56 gene mutations, but it has been suggested that the imaging characteristics of BFPP, including myelination defects and cerebellar cortical dysplasia, are reminiscent of those of the so-called cobblestone malformations (muscle-eye-brain disease and Fukuyama congenital muscular dystrophy) that are also associated with N-glycosylation defects in the developing brain.
Lissencephaly ("smooth brain") is the extreme form of pachygyria. In lissencephaly, few or no sulci are seen on the cortical surface, resulting in a broad, smooth appearance to the entire brain. Lissencephaly can be radiologically confused with polymicrogyria, particularly with low-resolution imaging, but the smoothness and lack of irregularity in the gray-white junction, along with markedly increased cortical thickness, distinguishes lissencephaly.
GPR56 mutation also can cause a severe encelphalopathy which is associated with electro clinical features of the Lennox-Gastaut syndrome. Lennox-Gastaut syndrome can be cryptogenic or symptomatic, but the symptomatic forms have been associated with multiple etiologies and abnormal cortical development. BFPP caused by GPR56 mutations is a representation of a malformation of cortical development that causes Lennox-Gastaut Syndrome.
Polymicrogyria usually gets misdiagnose with pacygyria so therefore it needs to be distinguished from pachygyria. Pachygyria is a distinct brain malformation in which the surface folds are excessively broad and sparse. Pachygyria and polymicrogyria may look similar on low-resolution neuroimaging such as CT because the cortical thickness can appear to be increased and the gyri can appear to be broad and smooth in both conditions. This is why higher resolution neuroimaging are needed such as an MRI.
Colpocephaly is a cephalic disorder involving the disproportionate enlargement of the occipital horns of the lateral ventricles and is usually diagnosed early after birth due to seizures. It is a nonspecific finding and is associated with multiple neurological syndromes, including agenesis of the corpus callosum, Chiari malformation, lissencephaly, and microcephaly. Although the exact cause of colpocephaly is not known yet, it is commonly believed to occur as a result of neuronal migration disorders during early brain development, intrauterine disturbances, perinatal injuries, and other central nervous system disorders. Individuals with colpocephaly have various degrees of motor disabilities, visual defects, spasticity, and moderate to severe intellectual disability.
No specific treatment for colpocephaly exists, but patients may undergo certain treatments to improve their motor function or intellectual disability.
Developmental regression is when a child loses an acquired function or fails to progress beyond a prolonged plateau after a period of relatively normal development. Developmental regression could be due to metabolic disorders, progressive hydrocephalus, worsening of seizures, increased spasticity, worsening of movement disorders or parental misconception of acquired milestones. The timing of onset of developmental regression can be established by repeated medical evaluations, prior photographs and home movies. Whether the neurologic decline is predominantly affecting the gray matter or the white matter of the brain needs to be ascertained. Seizures or EEG changes, movement disorders, blindness with retinal changes, personality changes and dementia are features suggestive of grey matter involvement.
Cerebellar hypoplasia is characterized by reduced cerebellar volume even though cerebellar shape is (near) normal. It consists of a heterogeneous group of disorder of cerebellar maldevelopment presenting as early onset non progressive ataxia, hypotonia, and motor learning disability. Various causes has been incriminated like hereditary, metabolic, toxic and viral agents. First reported by Crouzon in 1929. In 1940 an unclaimed body came for dissection in London Hospital and was discovered to have no cerebellum. This unique case was appropriately named "human brain without a cerebellum" and was used every year in the Department of Anatomy at Cambridge University in a neuroscience course for medical students.
Classification systems for malformations of the cerebellum are varied and are constantly being revised as greater understanding of the underlying genetics and embryology of the disorders is uncovered. A classification proposed by Patel S in 2002 divides cerebellar malformations in two broad groups; those with cerebellar hypoplasia and; those with cerebellar dysplasia.
- I. Cerebellar hypoplasia
- A. Focal hypoplasia
- 1. Isolated vermis
- 2. One hemisphere hypoplasia
- B. Generalized hypoplasia
- 1. With enlarged fourth ventricle (“cyst,”), Dandy-Walker continuum
- 2. Normal fourth ventricle (no “cyst”)
- a. With normal pons
- b. With small pons i. Normal foliation
- a) Pontocerebellar hypoplasias of Barth, types I and II
- b) Cerebellar hypoplasias, not otherwise specified
The classic presentation is gelastic or laughing epilepsy, a disorder characterized by spells of involuntary laughter with interval irritability and depressed mood. The tumor can be associated with other seizure types as well as precocious puberty and behavioral disorders. Gelastic epilepsy has been more classically associated with sessile lesions and precocious puberty reported with pedunculated morphology. More recent epidemiologic studies have found these associations to be less consistent, with gelastic epilepsy predominant in the majority of patients regardless of morphology.
Hypothalamic hamartomas are found in 33% of patients with true precocious puberty. The etiology of this relationship is unclear, but it is suspected in some cases to be due to a nonphysiological secretion of GnRH. A case of hamartoma has also been reported to secrete CRH, causing excessive ACTH production.
Seizures often begin when patients are young, although studies have shown adult onset as well. Many causes of the epilepsy have been theorized, with EEG often finding the hamartoma itself as the source of electrical activity, or epileptogenic focus. With chronic seizures, cognitive decline can develop, which can manifest as poor school performance, decreased nervous stimulus IQ, or limited socialization. Also other signs that may indicate this type of timoré are nosebleeds . Due to the fact that when the patient has headaches ,
The nose starts bleeding this means that the brain had lack of oxygen , and this may also cause the patient to see things moving or in color like purple etc .
Occurrence of seizures is often reported in children with PVL. In an Israel-based study of infants born between 1995 and 2002, seizures occurred in 102 of 541, or 18.7%, of PVL patients. Seizures are typically seen in more severe cases of PVL, affecting patients with greater amounts of lesions and those born at lower gestational ages and birth weights.
Premature infants often exhibit visual impairment and motor deficits in eye control immediately after birth. However, the correction of these deficits occurs "in a predictable pattern" in healthy premature infants, and infants have vision comparable to full-term infants by 36 to 40 weeks after conception. Infants with PVL often exhibit decreased abilities to maintain a steady gaze on a fixed object and create coordinated eye movements. Additionally, children with PVL often exhibit nystagmus, strabismus, and refractive error.
The main symptom resulting from PCA is a decrease in visuospatial and visuoperceptual capabilities. Because the posterior region of the brain is home to the occipital lobe, which is responsible for visual processing, visual functions are impaired in PCA patients. The atrophy is progressive; early symptoms include difficulty reading, blurred vision, light sensitivity, issues with depth perception, and trouble navigating through space. Additional symptoms include apraxia, a disorder of movement planning, alexia, an impaired ability to read, and visual agnosia, an object recognition disorder. Damage to the ventral, or “what” stream, of the visual system, located in the temporal lobe, leads to the symptoms related to general vision and object recognition deficits; damage to the dorsal, or “where/how” stream, located in the parietal lobe, leads to PCA symptoms related to impaired movements in response to visual stimuli, such as navigation and apraxia.
As neurodegeneration spreads, more severe symptoms emerge, including the inability to recognize familiar people and objects, trouble navigating familiar places, and sometimes visual hallucinations. In addition, patients may experience difficulty making guiding movements towards objects, and may experience a decline in literacy skills including reading, writing, and spelling. Furthermore, if neural death spreads into other anterior cortical regions, symptoms similar to Alzheimer's disease, such as memory loss, may result. PCA patients with significant atrophy in one hemisphere of the brain may experience hemispatial neglect, the inability to see stimuli on one half of the visual field. Anxiety and depression are also common in PCA patients.
Tuber cinereum hamartoma (also known as hypothalamic hamartoma) is a benign tumor in which a disorganized collection of neurons and glia accumulate at the tuber cinereum of the hypothalamus on the floor of the third ventricle. It is a congenital malformation, included on the spectrum of gray matter heterotopias. Formation occurs during embryogenesis, typically between days 33 and 41 of gestation. Size of the tumor varies from one to three centimeters in diameter, with the mean being closer to the low end of this range. It is estimated to occur at a frequency of one in one million individuals.
While nasal glial heterotopia (NGH) is the preferred term, synonyms have included nasal glioma. However, this term is to be discouraged, as it implies a neoplasm or tumor, which it is not. By definition, nasal glial heterotopia is a specific type of choristoma. It is not a teratoma, however, which is a neoplasm comprising all three germ cell layers (ectoderm, endoderm, mesoderm). As a congenital malformation or ectopia, it is distinctly different from the trauma or iatrogenic development of an encephalocele.
Patients come to clinical attention early in life (usually at birth or within the first few months), with a firm subcutaneous nodule at bridge of nose, or as a polypoid mass within the nasal cavity, or somewhere along the upper border of the nasal bow. If the patient presents with an intranasal mass, there may be obstruction, chronic rhinosinusitis, or nasal drainage. If there is a concurrent cerebrospinal fluid (CSF) leak, then an encephalocele is much more likely.
This lesion is separated into two types based on the anatomic site of presentation:
1. Extranasal (60%): Subcutaneous bridge of nose
2. Intranasal (30%): Superior nasal cavity
3. Mixed (10%): Subcutaneous tissues and nasal cavity (larger lesions)
Posterior cortical atrophy (PCA), also called Benson's syndrome, is a form of dementia which is usually considered an atypical variant of Alzheimer's disease (AD). The disease causes atrophy of the posterior part of the cerebral cortex, resulting in the progressive disruption of complex visual processing. PCA was first described by D. Frank Benson in 1988.
In rare cases, PCA can be caused by dementia with Lewy bodies and Creutzfeldt–Jakob disease.
PCA usually affects people at an earlier age than typical cases of Alzheimer's disease, with initial symptoms often experienced in people in their mid-fifties or early sixties. This was the case with writer Terry Pratchett (1948-2015), who went public in 2007 about being diagnosed with PCA. In "The Mind's Eye", neurologist Oliver Sacks examines the case of concert pianist Lilian Kallir (1931–2004), who suffered from PCA.
In locked-in syndrome the patient has awareness, sleep-wake cycles, and meaningful behavior (viz., eye-movement), but is isolated due to quadriplegia and pseudobulbar palsy, resulting from the disruption of corticospinal and corticobulbar pathways. Locked-in syndrome is a condition in which a patient is aware and awake but cannot move or communicate verbally due to complete paralysis of nearly all voluntary muscles in the body except for the eyes. Eye or eyelid movements are the main method of communication. Total locked-in syndrome is a version of locked-in syndrome where the eyes are paralyzed as well.
Most diagnosis occurs in the early years of life around 2 to 6 years old. There have been cases in which onset and diagnosis have occurred late into adulthood. Those with onset at this time have different signs, particularly the lack of cognitive deterioration. Overall, detection of adult forms of VWM is difficult as MRI was not a common tool when they were diagnosed. Common signs to look for include chronic progressive neurological deterioration with cerebellar ataxia, spasticity, mental decline, decline of vision, mild epilepsy, hand tremor, the ability to chew and swallow food becomes difficult, rapid deterioration and fibrile infections following head trauma or fright, loss of motor functions, irritability, behavioural changes, vomiting, and even coma. Those who go into coma, if they do come out usually die within a few years. The diagnosis can be difficult if the physician does not take an MRI.
Like coma, chronic coma results mostly from cortical or white-matter damage after neuronal or axonal injury, or from focal brainstem lesions.Usually the metabolism in the grey matter decreases to 50-70% of the normal range. The patient lacks awareness and arousal. The patient lies with eyes closed and is not aware of self or surroundings. Stimulation cannot produce spontaneous periods of wakefulness and eye-opening, unlike patients in vegetative state. In medicine, a coma (from the Greek κῶμα koma, meaning deep sleep) is a state of unconsciousness, lasting more than six hours in which a person cannot be awakened, fails to respond normally to painful stimuli, light, sound, lacks a normal sleep-wake cycle and does not initiate voluntary actions. Although, according to the Glasgow Coma Scale, a person with confusion is considered to be in the mildest coma. But cerebral metabolism has been shown to correlate poorly with the level of consciousness in patients with mild to severe injury within the first month after traumatic brain injury (TBI).
A person in a state of coma is described as comatose. In general patients surviving a coma recover gradually within 2–4 weeks. But recovery to full awareness and arousal is not always possible. Some patients do not progress further than vegetative state or minimally conscious state and sometimes this also results in prolonged stages before further recovery to complete consciousness.
Although a coma patient may appear to be awake, they are unable to consciously feel, speak, hear, or move. For a patient to maintain consciousness, two important neurological components must function impeccably. The first is the cerebral cortex which is the gray matter covering the outer layer of the brain. The other is a structure located in the brainstem, called reticular activating system (RAS or ARAS). Injury to either or both of these components is sufficient to cause a patient to experience a coma.
Often with VWM, the lack of knowledge of the disease causes a misdiagnosis among physicians. As VWM is a member of the large group of leukodystrophy syndromes, it is often misdiagnosed as another type such as metachromatic leukodystrophy. More often than not, it is simply classified as a non-specific leukodystrophy. The characteristics of the brain upon autopsy are often very similar to atypical diffuse sclerosis, such as the presence of fibrillary astrocytes and scant sudanophilic lipids. Adult-onset VWM disease can present with psychosis and may be hard to differentiate from schizophrenia. Common misdiagnosis from misinterpreting the MRI include asphyxia, congential infections, metabolic diseases.
Multiple Sclerosis is often a misdiagnosis, but only in children due to its neurological characteristics, onset in early years, and MRI abnormalities. However, there are many differences between the two diseases. The glial cells express a loss of myelin. This loss of myelin is different from that seen in other diseases where hypomyelination occurs. In VWM, the cells never produce the normal amounts, whereas with diseases like MS, the cells' normal amounts are deteriorated. Also, with MS, the demyelination occurs due to inflammation, which is not the case in VWM. Cell differences include a lower penetration of the macrophages and microglia, as well as the lack of T cells and B cells in VWM. Finally, patients with MS have widespread demyelination, but those with VWM only express demyelination in a localized area.