Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Granulocytes are a category of white blood cells characterized by the presence of granules in their cytoplasm. They are also called polymorphonuclear leukocytes (PMN, PML, or PMNL) because of the varying shapes of the nucleus, which is usually lobed into three segments. This distinguishes them from the mononuclear agranulocytes. In common parlance, the term "polymorphonuclear leukocyte" often refers specifically to "neutrophil granulocytes", the most abundant of the granulocytes; the other types (eosinophils, basophils, and mast cells) have lower numbers. Granulocytes are produced via granulopoiesis in the bone marrow.
Monocytes are a type of "leukocyte", or white blood cell. They are the largest type of leukocyte and can differentiate into macrophages and myeloid lineage dendritic cells. As a part of the vertebrate innate immune system monocytes also influence the process of adaptive immunity. There are at least three subclasses of monocytes in human blood based on their phenotypic receptors.
Basophils are a type of white blood cells. Basophils are the least common of the granulocytes, representing about 0.5 to 1% of circulating white blood cells. However, they are the largest type of granulocyte. They are responsible for inflammatory reactions during immune response, as well as in the formation of acute and chronic allergic diseases, including anaphylaxis, asthma, atopic dermatitis and hay fever. They can perform phagocytosis (cell eating), produce histamine and serotonin that induce inflammation, and heparin that prevents blood clotting. It used to be thought that basophils that have migrated from blood into their resident tissues (connective tissue) are known as mast cells, but this is no longer thought to be the case.
Basophils were discovered in 1879 by German physician Paul Ehrlich, who one year earlier had found a cell type present in tissues that he termed "mastzellen" (now mast cells). Ehrlich received the 1908 Nobel Prize in Physiology or Medicine for his discoveries.
The name comes from the fact that these leukocytes are basophilic, i.e., they are susceptible to staining by basic dyes, as shown in the picture.
There are four types of granulocytes:
- Basophils
- Eosinophils
- Neutrophils
- Mast cells
Their names are derived from their staining characteristics; for example, the most abundant granulocyte is the neutrophil granulocyte, which has neutrally staining cytoplasmic granules.
The typical patient with lymphocyte-variant hypereosinophilia presents with an extended history of hypereosinophilia and cutaneous allergy-like symptoms. Skin symptoms, which occur in >75% of patients, include erythroderma, pruritis, eczema, Poikiloderma, urticarial, and episodic angioedema. The symptom of episodic angioedema in lymphocyte-variant hypereosinophilia resembles that occurring in Gleich's syndrome, a rare disease that is accompanied by secondary hypereosinophilia plus a sub-population of CD3(-), CD4(+) T cells and therefore proposed, at least in many patients, a subtype of lymphocyte-variant hypereosiophilia. Biopsies of these erythroderma and eczema skin lesions find prominent accumulations of eosinophils. Other presentations include; a) lymphadenopathy occurring in ~60% of patients; b) eosinophil infiltrations in lung similar to, and often diagnosed as, eosinophilic pneumonia, occurring in ~20% of patients; c) episodic angioedema-related gastrointestinal symptoms that are sometimes similar to symptoms of the irritable bowel syndrome occurring in ~20% of patients; d) rheumatologic manifestations of inflammatory arthralgias in ~20% of patients; and e) splenomegaly occurring in ~10% of patients. Cardiovascular complications such as various types of heart damage (see above History section) and vascular injuries due to eosinophil infiltration and eosinophil-induced thrombosis are often critical components of persistent hypereosinohilia syndromes; These complications are not a prominent component of lymphocyte-variant hypereosionophilia, occurring in <10% of patients.
Lymphocyte-variant hypereosinophila, also termed lymphocyte variant eosinophilia, is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
The overly stimulated CFU-Eos cells mature to apparently normal eosinophils, enter the circulation, and may accumulate in, and severely damage, various tissues. The disorder is usually indolent or slowly progressive but may proceed to a leukemic phase and at this phases is sometimes classified as acute eosinophilic leukemia. Hence, lymphocyte-variant hypereosinophilia can be regarded as a precancerous disease.
The order merits therapeutic intervention to avoid or reduce eosinophil-induced tissue injury and to treat its leukemic phase. The latter phase of the disease is aggressive and typically responds relatively poorly to anti-leukemia chemotherapeutic drug regimens.
Dendritic cells (DCs) are antigen-presenting cells (also known as "accessory cells") of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. They act as messengers between the innate and the adaptive immune systems.
Dendritic cells are present in those tissues that are in contact with the external environment, such as the skin (where there is a specialized dendritic cell type called the Langerhans cell) and the inner lining of the nose, lungs, stomach and intestines. They can also be found in an immature state in the blood. Once activated, they migrate to the lymph nodes where they interact with T cells and B cells to initiate and shape the adaptive immune response. At certain development stages they grow branched projections, the "dendrites" that give the cell its name (δένδρον or déndron being Greek for "tree"). While similar in appearance, these are structures distinct from the dendrites of neurons. Immature dendritic cells are also called veiled cells, as they possess large cytoplasmic 'veils' rather than dendrites.
Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self and foreign lipids and glycolipids. They constitute only approximately 0.1% of all blood T cells. Natural killer T cells should not be confused with natural killer cells.
Monocytes are amoeboid in appearance, and have agranulated cytoplasm. Containing unilobar nuclei, these cells are one of the types of mononuclear leukocytes which shelter azurophil granules. The archetypal geometry of the monocyte nucleus is ellipsoidal; metaphorically bean-shaped or kidney-shaped, although the most significant distinction is that the nuclear envelope should not be hyperbolically furcated into lobes. Contrast to this classification occurs in polymorphonuclear leukocytes. Monocytes compose 2% to 10% of all leukocytes in the human body and serve multiple roles in immune function. Such roles include: replenishing resident macrophages under normal conditions; migration within approximately 8–12 hours in response to inflammation signals from sites of infection in the tissues; and differentiation into macrophages or dendritic cells to effect an immune response. In an adult human, half of the monocytes are stored in the spleen. These change into macrophages after entering into appropriate tissue spaces, and can transform into foam cells in endothelium.
Certain malignancies cause a secondary eosinophilia or, less commonly, hypereosinophilia. These increases in blood eosinophils appear due to the release of stimulatory cytokines or invasion of the bone marrow and thereby irritation of resident eosinophils or their precursors. Malignancies associated with these effects include gastric, colorectal, lung, bladder, and thyroid cancers, as well as squamous cell cancers of the cervix, vagina, penis, skin, and nasopharyrnx. Some hematological malignancies are likewise associated with secondary rises in blood eosinophil counts; these include Hodgkin disease, certain T-cell lymphomas, acute myeloid leukemia , the myelodysplastic syndromes, many cases of systemic mastocytosis, chronic myeloid leukemia, polycythemia vera, essential thrombocythemia, myelofibrosis, chronic myelomonocytic leukemia, and certain cases of T-lymphoblastic leukemia/lymphoma-associated or myelodysplastic–myeloproliferative syndrome-associated eosinophilias.
A wide range of drugs are known to cause hypereosinophilia or eosinophilia accompanied by an array of allergic symptoms. Rarely, these reactions are severe causing, for example, the drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome. While virtually any drug should be considered as a possible cause of these signs and symptoms, the following drugs and drug classes are some of the most frequently reported causes: penicillins, cephalosporins, dapsone, sulfonamides, carbamazepine, phenytoin, lamotrigine, valproic acid, nevirapine, efavirenz, and ibuprofen. These drugs may cause severely toxic reactions such as the DRESS syndrome. Other drugs and drug classes often reported to cause increased blood eosinophil levels accompanied by less severe (e.g. non-DRESS syndrome) symptoms include tetracyclins, doxycycline, linezolid, nitrofurantoin, metronidazole, carbamazepine, phenobarbital, lamotrigine, valproate, desipramine, amitriptyline, fluoxetine, piroxicam, diclofenac, ACE inhibitors, abacavir, nevirapine, ranitidine, cyclosporin, and hydrochlorothiazide.
The toxic oil syndrome is associated with hypereosinophilia/eosinophilia and systemic symptoms due to one or more contaminants in rapeseed oil and the Eosinophilia–myalgia syndrome, also associated with hypereosinophilia, appears due to trace contaminants in certain commercial batches of the amino acid, L-tryptophan.
The term "NK T cells" was first used in mice to define a subset of T cells that expressed the natural killer (NK) cell-associated marker NK1.1 (CD161). It is now generally accepted that the term "NKT cells" refers to CD1d-restricted T cells, present in mice and humans, some of which coexpress a heavily biased, semi-invariant T-cell receptor and NK cell markers.
In cardiovascular disease, increased white blood cell counts have been shown to indicate a worse prognosis.
An increase in eosinophil granulocyte is known as eosinophilia.
Granulocytosis can be a feature of a number of diseases:
- Infection, especially bacterial
- Malignancy, most notably leukemia (it is the main feature of chronic myelogenous leukemia, CML)
- Autoimmune disease
The morphology of dendritic cells results in a very large surface-to-volume ratio. That is, the dendritic cell has a very large surface area compared to the overall cell volume.
Basophils contain large cytoplasmic granules which obscure the cell nucleus under the microscope when stained. However, when unstained, the nucleus is visible and it usually has two . The mast cell, another granulocyte, is similar in appearance and function. Both cell types store histamine, a chemical that is secreted by the cells when stimulated. However, they arise from different branches of hematopoiesis, and mast cells usually do not circulate in the blood stream, but instead are located in connective tissue. Like all circulating granulocytes, basophils can be recruited out of the blood into a tissue when needed.
Adipose tissue macrophages (abbr. ATMs) comprise tissue resident macrophages present in adipose tissue. Adipose tissue apart from adipocytes is composed of the stromal vascular fraction (SVF) of cells including preadipocytes, fibroblasts, vascular endothelial cells and variety of immune cells. The latter ones are composed of mast cells, eosinophils, B cells, T cells and macrophages. The number of macrophages within adipose tissue differs depending on the metabolic status. As discovered by Rudolph Leibel and Anthony Ferrante et al. in 2003 at Columbia University, the percentage of macrophages within adipose tissue ranges from 10% in lean mice and humans up to 50% in extremely obese, leptin deficient mice and almost 40% in obese humans. Increased number of adipose tissue macrophages correlates with increased adipose tissue production of proinflammatory molecules and might therefore contribute to the pathophysiological consequences of obesity (e.g. insulin resistance, type 2 diabetes).
Morning pseudoneutropenia is a transient reduction in the measured neutrophil count from peripheral samples. This is noticed in some patients who are taking antipsychotic medication. Morning pseudoneutropenia is thought to be due to diurnal variation in the amount of circulating white blood cells and changes in the levels of hematopoietic cytokines and granulocyte colony stimulating factor (GCSF). Antipsychotics may amplify the natural variation in these hematopoietic factors.
Neutropenia is a hematological disorder characterized by an abnormally low number of neutrophils in the blood. Neutrophils usually make up 50-70% of circulating white blood cells and serve as the primary defense against infections. There is some variability in the neutrophil counts depending upon when the sample is taken, where the blood sample is taken from, and the system used by the medical lab for measuring the blood cells, but any significant reduction in function or number below the appropriate range may predispose individuals to infections.
Case reports of such incidences are reported with Clozapine and Risperidone and Aripiprazole.
These case reports suggest that the observed cases of the morning pseudoneutropenia did not proceed to become agranulocytosis which is a significant and dangerous side effect of some of antipsychotics. Hence it was suggested that although the morning neutrophil count may appear low, if the antipsychotic medication were considered efficaceous then white cell counts may be repeated in the afternoon prior to making a decision based only on the morning counts.
Clonal hypereosinophilia, also termed Primary hypereosinophelia or clonal eosinophilia, is a grouping of hematological disorder characterized by the development and growth of a pre-malignant or malignant population of eosinophils, a type of white blood cell, in the bone marrow, blood, and/or other tissues. This population consists of a clone of eosinophils, i.e. a group of genetically identical eosinophils derived from a sufficiently mutated ancestor cell.
The clone of eosinophils bear a mutation in any one of several genes that code for proteins that regulate cell growth. The mutations cause these proteins to be continuously active and thereby to stimulate growth in an uncontrolled and continuous manner. The expanding population of eosinophils, initially formed in the bone marrow may spread to the blood and then enter into and injure various tissues and organs.
Clinically, clonal eosinophilia resembles various types of chronic or acute leukemias, lymphomas, or myeloproliferative hematological malignancies. However, many of the clonal hypereosinophilias are distinguished from these other hematological malignancies by the genetic mutations which underlie their development and, more importantly, by their susceptibility to specific treatment regiments. That is, many types of these disorders are remarkably susceptible to relatively non-toxic drugs.
Among the presentation consistent with hyper IgM syndrome are the following:
- Infection/"Pneumocystis" pneumonia (PCP), which is common in infants with hyper IgM syndrome, is a serious illness. PCP is one of the most frequent and severe opportunistic infections in people with weakened immune systems. Many CD40 Ligand Deficiency are first diagnosed after having PCP in their first year of life. The fungus is common and is present in over 70% of healthy people’s lungs, however, Hyper IgM patients are not able to fight it off without the administration of Bactrim)
- Hepatitis (Hepatitis C)
- Chronic diarrhea
- Hypothyroidism
- Neutropenia
- Arthritis
- Encephalopathy (degenerative)
Agranulocytosis, also known as agranulosis or granulopenia, is an acute condition involving a severe and dangerous leukopenia (lowered white blood cell count), most commonly of neutrophils causing a neutropenia in the circulating blood. It is a severe lack of one major class of infection-fighting white blood cells. People with this condition are at very high risk of serious infections due to their suppressed immune system.
In agranulocytosis, the concentration of granulocytes (a major class of white blood cells that includes neutrophils, basophils, and eosinophils) drops below 500 cells/mm³ of blood.
Hyper IgM syndromes is a group of primary immune deficiency disorders characterized by defective CD40 signaling; "via" B cells affecting class switch recombination (CSR) and somatic hypermutation. Immunoglobulin (Ig) class switch recombination deficiencies are characterized by elevated serum Immunoglobulin M (IgM) levels and a considerable deficiency in Immunoglobulins G (IgG), A (IgA) and E (IgE). As a consequence, people with HIGM have decreased concentrations of serum IgG and IgA and normal or elevated IgM, leading to increased susceptibility to infections.
Cytopenia is a reduction in the number of mature blood cells. It takes a number of forms:
- Low red blood cell count: resulting in anemia.
- Low white blood cell count: leukopenia or neutropenia. Because neutrophils make up at least half of all white cells, they are almost always low in leukopenia .
- Low platelet count: thrombocytopenia.
- Low granulocyte count: granulocytopenia
- Low red blood cell, white blood cell, and platelet counts: pancytopenia.
The term "agranulocytosis" derives from the Greek: "a", meaning without; granulocyte, a particular kind of white blood cell (containing granules in its cytoplasm); and "osis", meaning condition [esp. disorder]. Consequently, agranulocytosis is sometimes described as "no granulocytes", but a total absence is not required for diagnosis.
However, "-osis" is commonly used in blood disorders to imply cell proliferation (such as in "leukocytosis"), while "-penia" to imply reduced cell numbers (as in "leukopenia"); for these reasons, granulopenia is a more etymologically consistent term, and as such, is sometimes preferred to "agranulocytosis" (which can be misinterpreted as "agranulocyt-osis", meaning proliferation of agranulocytes (i.e. lymphocytes and monocytes). Despite this, "agranulocytosis" remains the most widely used term for the condition.
The terms agranulocytosis, granulocytopenia and neutropenia are sometimes used interchangeably. Agranulocytosis implies a more severe deficiency than granulocytopenia. Neutropenia indicates a deficiency of neutrophils (the most common granulocyte cell) only.
To be precise, neutropenia is the term normally used to describe absolute neutrophil counts (ANCs) of less than 500 cells per microlitre, whereas agranulocytosis is reserved for cases with ANCs of less than 100 cells per microlitre.
The following terms can be used to specify the type of granulocyte referenced:
- Inadequate numbers of neutrophils: neutropenia (most common)
- Inadequate numbers of eosinophils: eosinopenia (uncommon)
- Inadequate numbers of basophils: basopenia (very rare)
In a general sense the pathogenesis of neutropenia can be divided into two categories;
- Inadequate or ineffective formation of granulocytes. This can be due to bone marrow failure such that occurs in aplastic anaemia, several leukaemias and chemotherapeutic agents. There can also be isolated neutropenias where only differentiated granulocyte precursors are affected as in the case of neoplastic proliferation of cytotoxic T cells or NK cells
- Accelerated destruction of neutrophils. Immune-mediated reactions to neutrophils which can be caused by drugs. An enlarged spleen can lead to splenic sequestration and accelerated removal of neutrophils. Utilization of neutrophils can occur in infections
Signs and symptoms of neutropenia include fever, painful swallowing, gingival pain, skin abscesses, and otitis. These symptoms may exist because individuals with neutropenia often have infection
Children may show signs of irritability, and poor feeding. Additionally, hypotension has also been observed in individuals who suffer from this condition