Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The defining characteristic of this form of the disorder is hemolytic anemia, in which red blood cells break down prematurely. Muscle weakness and pain are not as common in patients with hemolytic PFK deficiency.
Phosphofructokinase deficiency also presents in a rare infantile form. Infants with this deficiency often display floppy infant syndrome (hypotonia), arthrogryposis, encephalopathy and cardiomyopathy. The disorder can also manifest itself in the central nervous system, usually in the form of seizures. PFK deficient infants also often have some type of respiratory issue. Survival rate for the infantile form of PFK deficiency is low, and the cause of death is often due to respiratory failure.
Symptoms of enolase deficiency include exercise-induced myalgia and generalized muscle weakness and fatigability, both with onset in adulthood. Symptoms also include muscle pain without cramps, and decreased ability to sustain long term exercise.
The low incidence of this syndrome is often related to aldolase A's essential glycolytic role along with its exclusive expression in blood and skeletal muscle. Early developmental reliance and constitutive function prevents severe mutation in successful embryos. Infrequent documentation thus prevents clear generalisation of symptoms and causes. However five cases have been well described. ALDOA deficiency is diagnosed through reduced aldoA enzymatic activity, however, both physiological response and fundamental causes vary.
Symptoms of congenital Type III Galactosemia are apparent from birth, but vary in severity depending on whether the peripheral or generalized disease form is present. Symptoms may include:
- Infantile jaundice
- Infantile hypotonia
- Dysmorphic features
- Sensorineural hearing loss
- Impaired growth
- Cognitive deficiencies
- Depletion of cerebellar Purkinje cells
- Ovarian failure (POI) and hypertrophic hypergonadism
- Liver failure
- Renal failure
- Splenomegaly
- Cataracts
Studies of Type III galactosemia symptoms are mostly descriptive, and precise pathogenic mechanisms remain unknown. This is largely due to a lack of functional animal models of classic galactosemia. The recent development of a "Drosophila melanogaster" GALE mutant exhibiting galactosemic symptoms may yield a promising future animal model.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
The signs and symptoms in glycogen storage disease type IX include:
- Enlarged liver
- Slowed growth
- Motor development delay (mild)
- Low blood sugar accompanied by ketosis
- Lack of muscle tone
Most of these signs and symptoms diminish as adulthood sets in.
Glycerol Kinase Deficiency (GKD) is an X-linked recessive enzyme defect that is heterozygous in nature. Three clinically distinct forms of this deficiency have been proposed, namely infantile, juvenile, and adult. National Institutes of Health and its Office of Rare Diseases Research (ORDR) branch classifies GKD as a rare disease, known to affect fewer than 200,000 individuals in the United States. The responsible gene lies in a region containing genes in which deletions can cause Duchenne muscular dystrophy and adrenal hypoplasia congenita. Combinations of these three genetic defects including GKD are addressed medically as Complex GKD.
Aldolase A deficiency, also called ALDOA deficiency, red cell aldolase deficiency or glycogen storage disease type 12 (GSD XII) is an autosomal recessive metabolic disorder resulting in a deficiency of the enzyme aldolase A; the enzyme is found predominantly in red blood cells and muscle tissue. The deficiency may lead to hemolytic anaemia as well as myopathy associated with exercise intolerance and rhabdomyolysis in some cases.
Symptoms can be extremely varied among those suffering from pyruvate kinase deficiency. The majority of those suffering from the disease are detected at birth while some only present symptoms during times of great physiological stress such as pregnancy, or with acute illnesses (viral disorders). Symptoms are limited to or most severe during childhood. Among the symptoms of pyruvate kinase deficiency are:
- Mild to severe hemolytic Anemia
- Cholecystolithiasis
- Tachycardia
- Hemochromatosis
- Icteric sclera
- Splenomegaly
- Leg ulcers
- Jaundice
- Fatigue
- Shortness of breath
The most common clinical history in patients with glycogen-storage disease type 0 (GSD-0) is that of an infant or child with symptomatic hypoglycemia or seizures that occur before breakfast or after an inadvertent fast. In affected infants, this event typically begins after they outgrow their nighttime feeds. In children, this event may occur during acute GI illness or periods of poor enteral intake.
Mild hypoglycemic episodes may be clinically unrecognized, or they may cause symptoms such as drowsiness, sweating, lack of attention, or pallor. Uncoordinated eye movements, disorientation, seizures, and coma may accompany severe episodes.
Glycogen-storage disease type 0 affects only the liver. Growth delay may be evident with height and weight percentiles below average. Abdominal examination findings may be normal or reveal only mild hepatomegaly.Signs of acute hypoglycemia may be present, including the following:
Patients generally have a benign course, and typically present with hepatomegaly and growth retardation early in childhood. Mild hypoglycemia, hyperlipidemia, and hyperketosis may occur. Lactic acid and uric acid levels may be normal. However, lactic acidosis may occur during fasting.
Remarks:
- Some GSDs have different forms, e.g. infantile, juvenile, adult (late-onset).
- Some GSDs have different subtypes, e.g. GSD1a / GSD1b, GSD9A1 / GSD9A2 / GSD9B / GSD9C / GSD9D.
- GSD type 0: Although glycogen synthase deficiency does not result in storage of extra glycogen in the liver, it is often classified with the GSDs as type 0 because it is another defect of glycogen storage and can cause similar problems.
- GSD type VIII (GSD 8): In the past it was considered a distinct condition, however it is now classified with GSD type VI or GSD IXa1; it has been described as X-linked recessive inherited.
- GSD type XI (GSD 11): Fanconi-Bickel syndrome, hepatorenal glycogenosis with renal Fanconi syndrome, no longer considered a glycogen storage disease.
- GSD type XIV (GSD 14): Now classed as Congenital disorder of glycosylation type 1 (CDG1T), affects the phosphoglucomutase enzyme (gene PGM1).
- Lafora disease is considered a complex neurodegenerative disease and also a glycogen metabolism disorder.
Hyperglycerolemia, also known as Glycerol kinase deficiency (GKD), is a genetic disorder where the enzyme glycerol kinase is deficient resulting in a build-up of glycerol in the body. Glycerol kinase is responsible for synthesizing triglycerides and glycerophospholipids in the body. Excess amounts of glycerol can be found in the blood and/ or urine. Hyperglycerolmia occurs more frequently in males. Hyperglycerolemia is listed as a “rare disease” by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH), which means it affects less than 200,000 people in the US population (U.S. Department of Health & Human Services), or less than about 1 in 1500 people.
A Glycogen storage disease (GSD, also glycogenosis and dextrinosis) is a metabolic disorder caused by enzyme deficiencies affecting either glycogen synthesis, glycogen breakdown or glycolysis (glucose breakdown), typically within muscles and/or liver cells.
GSD has two classes of cause: genetic and acquired. Genetic GSD is caused by any inborn error of metabolism (genetically defective enzymes) involved in these processes. In livestock, acquired GSD is caused by intoxication with the alkaloid castanospermine.
Mevalonate kinase deficiency, also called mevalonic aciduria and hyper immunoglobin D syndrome is an autosomal recessive metabolic disorder that disrupts the biosynthesis of cholesterol and isoprenoids.
It is characterized by an elevated level of immunoglobin D in the blood.
The enzyme is involved in biosynthesis of cholesterols and isoprenoids. The enzyme is necessary for the conversion of mevalonate to mevalonate-5-phosphate in the presence of Mg2+ [Harper’s biochemistry manual]. Mevalonate kinase deficiency causes the accumulation of mevalonate in urine and hence the activity of the enzyme is again reduced Mevalonate kinase deficiency. It was first described as HIDS in 1984.
Glycogen storage disease type IX is a hereditary deficiency of glycogen phosphorylase kinase B that affects the liver and skeletal muscle tissue. It is inherited in an X-linked or autosomal recessive manner.
Glycerol and glycerol kinase activity analyses are usually not offered by routine general medical laboratories. To diagnose hyperglycerolemia, blood and urine can be tested for the amounts of glycerol present.
There are three clinical forms of GKD: infantile, juvenile, and adult. The infantile form is associated with severe developmental delay and results in a syndrome with Xp21 gene deletion with congenital adrenal hypoplasia and/or Duchenne muscular dystrophy. The infantile diagnosis is made by measuring plasma glycerol and is characterized by glycerol levels between 1.8 and 8.0 mmol/L and glyceroluria more than 360 mmol/24h. To confirm the diagnosis, genetic testing of the Xp21 gene is definitive. Children with GKD have severe hypoglycemic episodes and profound metabolic acidosis, or are completely symptom free. Individuals who are unable to form glucose from the glycerol released during triglyceride catabolism also the hypoglycemic episodes often disappear during adolescence. Patients with the juvenile and adult forms often have no symptoms and are diagnosed fortuitously when a medical professional tests for another medical condition. The juvenile form is an uncommon form characterized by Reye syndrome-like clinical manifestations including episodic vomiting, acidemia, and disorders of consciousness.
Glycogen storage disease type 0 is a disease characterized by a deficiency in the glycogen synthase enzyme (GYS). Although glycogen synthase deficiency does not result in storage of extra glycogen in the liver, it is often classified as a glycogen storage disease because it is another defect of glycogen storage and can cause similar problems. There are two isoforms (types) of glycogen synthase enzyme; GYS1 in muscle and GSY2 in liver, each with a corresponding form of the disease. Mutations in the liver isoform (GYS2), causes fasting hypoglycemia, high blood ketones, increased free fatty acids and low levels of alanine and lactate. Conversely, feeding in these patients results in hyperglycemia and hyperlactatemia.
Glycogen storage disease type VI (GSD VI) is a type of glycogen storage disease caused by a deficiency in liver glycogen phosphorylase or other components of the associated phosphorylase cascade system. It is also known as "Hers' disease", after Henri G. Hers, who characterized it in 1959. The scope of GSD VI now also includes glycogen storage disease type VIII, IX (caused by phosphorylase b kinase deficiency) and X (deficiency protein kinase A).
The incidence of GSD VI is approximately 1 case per 65,000–85,000 births, representing approximately 30% all cases of glycogen storage disease. Approximately 75% of these GSD VI cases result from the X-linked recessive forms of phosphorylase kinase deficiency, all other forms are autosomal recessive.
Pyruvate kinase deficiency is an inherited metabolic disorder of the enzyme pyruvate kinase which affects the survival of red blood cells. Both autosomal dominant and recessive inheritance have been observed with the disorder; classically, and more commonly, the inheritance is autosomal recessive. Pyruvate kinase deficiency is the second most common cause of enzyme-deficient hemolytic anemia, following G6PD deficiency.
2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in "NADK2," located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.
2,4-Dienoyl-CoA reductase deficiency was initially described in 1990 based on a single case of a black female who presented with persistent hypotonia. Laboratory investigations revealed elevated lysine, low levels of carnitine and an abnormal acylcarnitine profile in urine and blood. The abnormal acylcarnitine species was eventually identified as 2-trans,4-cis-decadienoylcarnitine, an intermediate of linoleic acid metabolism. The index case died of respiratory failure at four months of age. Postmortem enzyme analysis on liver and muscle samples revealed decreased 2,4-dienoyl-CoA reductase activity when compared to normal controls. A second case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy was reported in 2014.
2,4-Dienoyl-CoA reductase deficiency was included as a secondary condition in the American College of Medical Genetics Recommended Uniform Panel for newborn screening. Its status as a secondary condition means there was not enough evidence of benefit to include it as a primary target, but it may be detected during the screening process or as part of a differential diagnosis when detecting conditions included as primary target. Despite its inclusion in newborn screening programs in several states for a number of years, no cases have been identified via neonatal screening.
The onset of this disease is usually noticed in childhood, but often not diagnosed until the third or fourth decade of life. Symptoms include exercise intolerance with muscle pain, early fatigue, painful cramps, and myoglobin in the urine (often provoked by a bout of exercise). Myoglobinuria may result from the breakdown of skeletal muscle known as rhabdomyolysis, a condition in which muscle cells breakdown, sending their contents into the bloodstream.
Patients may exhibit a “second wind” phenomenon. This is characterized by the patient’s better tolerance for aerobic exercise such as walking and cycling after approximately 10 minutes. This is attributed to the combination of increased blood flow and the ability of the body to find alternative sources of energy, like fatty acids and proteins. In the long term, patients may exhibit renal failure due to the myoglobinuria, and with age, patients may exhibit progressively increasing weakness and substantial muscle loss.
Patients may present at emergency rooms with severe fixed contractures of the muscles and often severe pain. These require urgent assessment for rhabdomyolysis as in about 30% of cases this leads to acute renal failure. Left untreated this can be life-threatening. In a small number of cases compartment syndrome has developed, requiring prompt surgical referral.