Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The clinical picture is heterogeneous and includes motor delay, seizures, moderate to severe mental retardation, absent speech, growth delay, muscular hypotonia and autistic features.
Signs and symptoms of CTLN1 in infants are caused by increasing levels of ammonia in the blood and cerebrospinal fluid and include excessive vomiting, anorexia, refusal to eat, irritability, increased intracranial pressure, and worsening lethargy, seizures, hypotonia, respiratory distress, hepatomegaly, and cerebral edema. These symptoms appear within days of birth in the more severe forms of the disease with complete deficiency of the enzyme. As ammonia accumulates further, the affected infant may enter a hyperammonemic coma, which indicates neurological damage and can cause developmental delays, cognitive disabilities, cerebral palsy, hypertonia, spasticity, ankle clonus, seizures, and liver failure.
Milder forms of the disease are caused by partial arginosuccinate synthetase deficiency and may manifest in childhood or in adulthood. Symptoms of mild CTLN1 include failure to thrive, avoidance of high-protein foods, ataxia, worsening lethargy, and vomiting. Hyperammonemic coma can still develop in these people. CTLN1 can also develop in the perinatal period.
People with methylmalonyl CoA mutase deficiency exhibit many symptoms similar to other diseases involving inborn errors of metabolism. Sometimes the symptoms appear shortly after birth, but other times the onset of symptoms is later.
Newborn babies experience with vomiting, acidosis, hyperammonemia, hepatomegaly (enlarged livers), hyperglycinemia (high glycine levels), and hypoglycemia (low blood sugar). Later, cases of thrombocytopenia and neutropenia can occur.
In some cases intellectual and developmental disabilities, such as autism, were noted with increased frequency in populations with methylmalonyl-CoA mutase deficiency.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
A characteristic feature of isovaleric acidemia is a distinctive odor of sweaty feet. This odor is caused by the buildup of a compound called isovaleric acid in affected individuals.
In about half of cases, the signs and symptoms of this disorder become apparent within a few days after birth and include poor feeding, vomiting, seizures, and lack of energy that can progress to coma. These medical problems are typically severe and can be life-threatening. In the other half of cases, the signs and symptoms of the disorder appear during childhood and may come and go over time. They are often triggered by an infection or by eating an increased amount of protein-rich foods.
SBCADD is included as a secondary target condition in most newborn screening programs, as the key analyte is the same as is used to identify isovaleric acidemia. Most cases have been Hmong individuals, who are asymptomatic. There are isolated case reports where individuals have been identified with SBCADD in addition to developmental delay and epilepsy. It is currently unclear what the complete clinical presentation of SBCADD looks like. There is some concern that these cases with additional symptoms may reflect an ascertainment bias rather than being a true representation of the clinical spectrum of the disease. Currently, there is no accepted treatment, as most affected individuals do not require any. Some recommend avoidance of valproic acid, as it can be a substrate for 2-methylbutyryl-CoA dehydrogenase.
Generally, the majority of individuals with creatine transporter defect express the following symptoms with varying levels of severity: developmental delay and regression, mental retardation, and abnormalities in expressive and cognitive speech. However, several studies have shown a wider variety of symptoms including, but not limited to attention deficit and hyperactivity with impulsivity, myopathy, hypotonia, semantic-pragmatic language disorder, oral dyspraxia, extrapyramidal movement disorder, constipation, absent speech development, seizures, and epilepsy. Furthermore, symptoms can significantly vary between hemizygous males and heterozygous females, although, symptoms are generally more severe in hemizygous males. Hemizygous males more commonly express seizures, growth deficiency, severe mental retardation, and severe expressive language impairment. Heterozygous females more commonly express mild retardation, impairments to confrontational naming and verbal memory, and learning and behavior problems.
Symptoms of enolase deficiency include exercise-induced myalgia and generalized muscle weakness and fatigability, both with onset in adulthood. Symptoms also include muscle pain without cramps, and decreased ability to sustain long term exercise.
The low incidence of this syndrome is often related to aldolase A's essential glycolytic role along with its exclusive expression in blood and skeletal muscle. Early developmental reliance and constitutive function prevents severe mutation in successful embryos. Infrequent documentation thus prevents clear generalisation of symptoms and causes. However five cases have been well described. ALDOA deficiency is diagnosed through reduced aldoA enzymatic activity, however, both physiological response and fundamental causes vary.
This defect leads to a multi-systemic disorder of the connective tissue, muscles, central nervous system (CNS), and cardiovascular system. Homocystinuria represents a group of hereditary metabolic disorders characterized by an accumulation of the amino acid homocysteine in the serum and an increased excretion of homocysteine in the urine. Infants appear to be normal and early symptoms, if any are present, are vague.
Signs and symptoms of homocystinuria that may be seen include the following:
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Depending on the affected gene(s), this disorder may present symptoms that range from mild to life-threatening.
- Stroke
- Progressive encephalopathy
- Seizure
- Kidney failure
- Vomiting
- Dehydration
- Failure to thrive and developmental delays
- Lethargy
- Repeated Yeast infections
- Acidosis
- Hepatomegaly
- Hypotonia
- Pancreatitis
- Respiratory distress
The symptoms are visible within the first week of life and if not detected and diagnosed correctly immediately consequences are fatal.
Citrullinemia type I (CTLN1), also known as arginosuccinate synthetase deficiency, is a rare disease caused by a deficiency in argininosuccinate synthetase, an enzyme involved in excreting excess nitrogen from the body. There are mild and severe forms of the disease, which is one of the urea cycle disorders.
Aminoacylase 1 deficiency is a rare inborn error of metabolism. To date only 21 cases have been described.
2-Methylbutyryl-CoA dehydrogenase deficiency, also called 2-Methylbutyryl glycinuria or short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), is an autosomal recessive metabolic disorder. It causes the body to be unable to process the amino acid isoleucine properly. Initial case reports identified individuals with developmental delay and epilepsy, however most cases identified through newborn screening have been asymptomatic.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
Cerebral creatine deficiencies (CCD's) are a small group of disorders mainly concerned with creatine biosynthesis and utilization in the brain at the blood-brain interface. The most common CCD is:
- creatine transporter defect (CTD), an X-linked condition caused by mutations in the "SLC6A8" gene.
The two other forms of CCD are creatine "enzymatic" defects (CED's) in creatine biosynthesis, i.e. the enzyme deficiencies:
- , and
- guanidinoacetate methyltransferase deficiency.
Isovaleric acidemia is a rare autosomal recessive metabolic disorder which disrupts or prevents normal metabolism of the branched-chain amino acid leucine. It is a classical type of organic acidemia.
People with guanidinoacetate methyltransferase deficiency have a wide spectrum of neurological symptoms. In addition to developmental disability and muscle weakness, some children with this disorder experience seizures. They may also develop autistic behaviors that affect communication and social interaction. Some affected children exhibit certain involuntary movements such as tremors or facial tics.
Guanidinoacetate methyltransferase deficiency is a very rare disorder. Only a few dozen affected individuals have been reported worldwide. Of these, approximately one third are of Portuguese origin.
Methylmalonic acidemia (MMA), also called methylmalonic aciduria, is an autosomal recessive metabolic disorder. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.
Methylmalonic acidemia stems from several genotypes, all forms of the disorder usually diagnosed in the early neonatal period, presenting progressive encephalopathy, and secondary hyperammonemia. The disorder can result in death if undiagnosed or left untreated. It is estimated that this disorder has a frequency of 1 in 48,000 births, though the high mortality rate in diagnosed cases make exact determination difficult. Methylmalonic acidemias are found with an equal frequency across ethnic boundaries.
Creatine transporter defect (CTD) is an inborn error of creatine metabolism in which creatine is not properly transported to the brain and muscles due to defective creatine transporters. CTD is an X-linked disorder caused by mutations in the SLC6A8 gene. The SLC6A8 gene is located on the short arm of the sex chromosome, Xq28. Hemizygous males with CTD express speech and behavior abnormalities, intellectual disabilities, development delay, seizures, and autistic behavior. Heterozygous females with CTD generally express fewer, less severe symptoms. CTD is one of three different types of cerebral creatine deficiency (CCD). The other two types of CCD are guanidinoacetate methyltransferase (GAMT) deficiency and deficiency. Clinical presentation of CTD is similar to that of GAMT and AGAT deficiency. CTD was first identified in 2001 with the presence of a hemizygous nonsense mutation in the SLC6A8 gene in a male patient.
Classical homocystinuria, also known as cystathionine beta synthase deficiency or CBS deficiency, is an inherited disorder of the metabolism of the amino acid methionine, often involving cystathionine beta synthase. It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected.
Transaldolase deficiency is a disease characterised by abnormally low levels of the Transaldolase enzyme. It is a metabolic enzyme involved in the pentose phosphate pathway. It is caused by mutation in the transaldolase gene (TALDO1). It was first described by Verhoeven et al. in 2001.
This disorder usually appears in the first few months of life, when development of new motor and cognitive skills becomes delayed or stops. Eventually, affected children may lose previously acquired skills such as head control or the ability to sit unsupported.