Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Open-angle glaucoma is painless and does not have acute attacks, thus the lack of clear symptoms make screening via regular eye check-ups important. The only signs are gradually progressive visual field loss, and optic nerve changes (increased cup-to-disc ratio on fundoscopic examination).
About 10% of people with closed angles present with acute angle closure characterized by sudden ocular pain, seeing halos around lights, red eye, very high intraocular pressure (>30 mmHg), nausea and vomiting, suddenly decreased vision, and a fixed, mid-dilated pupil. It is also associated with an oval pupil in some cases. Acute angle closure is an emergency.
Opaque specks may occur in the lens in glaucoma, known as glaukomflecken.
Secondary glaucoma (H40.3-H40.6)
- Inflammatory glaucoma
- Phacogenic glaucoma
- Glaucoma secondary to intraocular hemorrhage
- Traumatic glaucoma
- Neovascular glaucoma (see below for more details)
- Drug-induced glaucoma
- Glaucoma of miscellaneous origin
Neovascular glaucoma, an uncommon type of glaucoma, is difficult or nearly impossible to treat, and is often caused by proliferative diabetic retinopathy (PDR) or central retinal vein occlusion (CRVO). It may also be triggered by other conditions that result in ischemia of the retina or ciliary body. Individuals with poor blood flow to the eye are highly at risk for this condition.
Neovascular glaucoma results when new, abnormal vessels begin developing in the angle of the eye that begin blocking the drainage. Patients with such condition begin to rapidly lose their eyesight. Sometimes, the disease appears very rapidly, especially after cataract surgery procedures. A new treatment for this disease, as first reported by Kahook and colleagues, involves the use of a novel group of medications known as anti-VEGF agents. These injectable medications can lead to a dramatic decrease in new vessel formation and, if injected early enough in the disease process, may lead to normalization of intraocular pressure. Currently, there are no high-quality controlled trials demonstrating a beneficial effect of anti-VEGF treatments in lowering IOP in people with neovascular glaucoma.
Toxic glaucoma is open angle glaucoma with an unexplained significant rise of intraocular pressure following unknown pathogenesis. Intraocular pressure can sometimes reach . It characteristically manifests as ciliary body inflammation and massive trabecular oedema that sometimes extends to Schlemm's canal. This condition is differentiated from malignant glaucoma by the presence of a deep and clear anterior chamber and a lack of aqueous misdirection. Also, the corneal appearance is not as hazy. A reduction in visual acuity can occur followed neuroretinal breakdown.
Associated factors include inflammation, drugs, trauma and intraocular surgery, including cataract surgery and vitrectomy procedures. Gede Pardianto (2005) reported on four patients who had toxic glaucoma. One of them underwent phacoemulsification with small particle nucleus drops. Some cases can be resolved with some medication, vitrectomy procedures or trabeculectomy. Valving procedures can give some relief, but further research is required.
The typical infant who has congenital glaucoma usually is initially referred to an ophthalmologist because of apparent corneal edema. The commonly described triad of epiphora (excessive tearing), blepharospasm and photophobia may be missed until the corneal edema becomes apparent.
Rubeosis iridis, also called neovascularization of the iris (NVI), is a medical condition of the iris of the eye in which new abnormal blood vessels (formed by neovascularization) are found on the surface of the iris.
Signs and symptoms of macular degeneration include:
- Visual symptoms
- Distorted vision in the form of metamorphopsia, in which a grid of straight lines appears wavy and parts of the grid may appear blank: Patients often first notice this when looking at things like miniblinds in their home or telephone poles while driving. There may also be central scotomas, shadows or missing areas of vision
- Slow recovery of visual function after exposure to bright light (photostress test)
- Visual acuity drastically decreasing (two levels or more), e.g.: 20/20 to 20/80
- Blurred vision: Those with nonexudative macular degeneration may be asymptomatic or notice a gradual loss of central vision, whereas those with exudative macular degeneration often notice a rapid onset of vision loss (often caused by leakage and bleeding of abnormal blood vessels).
- Trouble discerning colors, specifically dark ones from dark ones and light ones from light ones
- A loss in contrast sensitivity
Macular degeneration by itself will not lead to total blindness. For that matter, only a very small number of people with visual impairment are totally blind. In almost all cases, some vision remains, mainly peripheral. Other complicating conditions may possibly lead to such an acute condition (severe stroke or trauma, untreated glaucoma, etc.), but few macular degeneration patients experience total visual loss.
The area of the macula comprises only about 2.1% of the retina, and the remaining 97.9% (the peripheral field) remains unaffected by the disease. Even though the macula provides such a small fraction of the visual field, almost half of the visual cortex is devoted to processing macular information.
The loss of central vision profoundly affects visual functioning. It is quite difficult, for example, to read without central vision. Pictures that attempt to depict the central visual loss of macular degeneration with a black spot do not really do justice to the devastating nature of the visual loss. This can be demonstrated by printing letters six inches high on a piece of paper and attempting to identify them while looking straight ahead and holding the paper slightly to the side. Most people find this difficult to do.
The most common sign at presentation is leukocoria (abnormal white reflection of the retina). Symptoms typically begin as blurred vision, usually pronounced when one eye is closed (due to the unilateral nature of the disease). Often the unaffected eye will compensate for the loss of vision in the other eye; however, this results in some loss of depth perception and parallax. Deterioration of sight may begin in either the central or peripheral vision. Deterioration is likely to begin in the upper part of the vision field as this corresponds with the bottom of the eye where blood usually pools. Flashes of light, known as photopsia, and floaters are common symptoms. Persistent color patterns may also be perceived in the affected eye. Initially, these may be mistaken for psychological hallucinations, but are actually the result of both retinal detachment and foreign fluids mechanically interacting with the photoreceptors located on the retina.
One early warning sign of Coats' disease is yellow-eye in flash photography. Just as the red-eye effect is caused by a reflection off blood vessels in the back of a normal eye, an eye affected by Coats' will glow yellow in photographs as light reflects off cholesterol deposits. Children with yellow-eye in photographs are typically advised to immediately seek evaluation from an optometrist or ophthalmologist, who will assess and diagnose the condition and refer to a vitreo-retinal specialist.
Coats' disease itself is painless. Pain may occur if fluid is unable to drain from the eye properly, causing the internal pressure to swell, resulting in painful glaucoma.
This condition is often associated with diabetes in advanced proliferative diabetic retinopathy. Other conditions causing rubeosis iridis include central retinal vein occlusion, ocular ischemic syndrome, and chronic retinal detachment.
This condition is usually unilateral, and its symptoms vary from none to mild blurring and discomfort. Signs include diffuse iris atrophy and small white keratic precipitates (deposits on the inner surface of the cornea), cells presenting in the anterior chamber as well as the anterior vitreous. Glaucoma and cataract occur frequently.
Distortion of vision refers to straight lines not appearing straight, but instead bent, crooked, or wavy. Usually this is caused by distortion of the retina itself. This distortion can herald a loss of vision in macular degeneration, so anyone with distorted vision should seek medical attention by an ophthalmologist promptly. Other conditions leading to swelling of the retina can cause this distortion, such as macular edema and central serous chorioretinopathy.
An Amsler grid can be supplied by an ophthalmologist so that the vision can be monitored for distortion in people who may be predisposed to this problem.
Tunnel vision implies that the peripheral vision, or side vision, is lost, while the central vision remains. Thus, the vision is like looking through a tunnel, or through a paper towel roll. Some disorders that can cause this include:
Glaucoma - severe glaucoma can result in loss of nearly all of the peripheral vision, with a small island of central vision remaining. Sometimes even this island of vision can be lost as well.
Retinitis pigmentosa - This is usually a hereditary disorder which can be part of numerous syndromes. It is more common in males. The peripheral retina develops pigmentary deposits, and the peripheral vision gradually becomes worse and worse. The central vision can be affected eventually as well. People with this problem may have trouble getting around in the dark. Cataract can be a complication as well. There is no known treatment for this disorder, and supplements of Vitamin A have not been proven to help.
Punctate Inner Choroidopathy - This condition is where vessels gro (( material is missing ))
Stroke - a stroke involving both sides of the visual part of the brain may wipe out nearly all of the peripheral vision. Fortunately, this is a very rare occurrence
Seeing rainbows around lights, especially at night, usually indicates swelling of the cornea. This may occur from a variety of causes which are discussed under Corneal Edema. Cataract can sometimes cause this also.
Colour vision is perceived mainly by the macula, which is the central vision portion of the retina. Thus any disorder affecting the macula may cause a disturbance in color vision. However, about 8% of males and 0.5% of females have some version of "colour blindness" from birth. Usually this is a genetically inherited trait, and is of the "red-green confusion" variety. The reds, browns, olives, and gold may be confused. Purple may be confused with blue, and pastel pinks, oranges, yellows, and greens look similar. Usually both eyes are affected equally.
There are many obscure macular retinal disorders that can lead to a loss of colour vision, and many of these syndromes are inherited as well. There may also be a problem with a generalized loss of vision with these problems as well. Other retinal problems can lead to a temporary disturbance of colour vision, such as Central serous chorioretinopathy, Macular Edema of different causes, and Macular Degeneration.
Certain types of cataract can gradually affect the colour vision, but this is usually not noticed until one cataract is removed. The cataract seems to filter out the colour blue, and everything seems more blue after cataract extraction. Optic nerve disorders such as Optic Neuritis can greatly affect colour vision, with colours seeming washed out during or after an episode.
Intermediate AMD is diagnosed by large drusen and/or any retinal pigment abnormalities. Intermediate AMD may cause some vision loss, however, like Early AMD, it is usually asymptomatic.
The diagnosis is clinical. The intraocular pressure (IOP) can be measured in the office in a conscious swaddled infant using a Tonopen or hand-held Goldmann tonometer. Usually, the IOP in normal infants is in the range of 11-14 mmHg. Buphthalmos and Haab's striae can often be seen in case of congenital glaucoma.
Many cases are asymptomatic, however patients many have decreased vision, glare, monocular diplopia or polyopia, and noticeable iris changes [2,6]. On exam patients have normal to decreased visual acuity, and a “beaten metal appearance” of the corneal endothelium, corneal edema, increased intraocular pressure, peripheral anterior synechiae, and iris changes [1,2,6].
Fuchs heterochromic iridocyclitis (FHI) is a chronic unilateral uveitis appearing with the triad of heterochromia, predisposition to cataract and glaucoma, and keratitic precipitates on the posterior corneal surface. Patients are often asymptomatic and the disease is often discovered through investigation of the cause of the heterochromia or cataract. Neovascularisation (growth of new abnormal vessels) is possible and any eye surgery, such as cataract surgery, can cause bleeding from the fragile vessels in the atrophic iris causing accumulation of blood in anterior chamber of the eye, also known as hyphema.
Normal tension glaucoma (NTG) is an eye disease, a neuropathy of the optic nerve, that shows all the characteristics of "traditional" glaucoma except one: the elevated intraocular pressure (IOP) - the classic hallmark of glaucoma - is missing. Normal tension glaucoma is in many cases closely associated with general issues of blood circulation and of organ perfusion like arterial hypotension, metabolic syndrome, and Flammer syndrome.
In many patients, normal tension glaucoma is common in individuals with a generalized reduced perfusion of organs and certain body tissues. A low blood pressure - whether consistently low or with sudden pressure drops - is associated with NTG as are conditions like Flammer syndrome and obstructive sleep apnea. Flammer syndrome has been attributed to increase the likelihood of ganglion cell damage in normal tension glaucoma patients with disc hemorrhages as a characteristic clinical sign. Besides race (Japanese) and low blood pressure, the female gender is also a risk factor.
Coats' usually affects only one eye (unilateral) and occurs predominantly in young males 1/100,000, with the onset of symptoms generally appearing in the first decade of life. Peak age of onset is between 6–8 years of age, but onset can range from 5 months to 71 years.
Coats' disease results in a gradual loss of vision. Blood leaks from the abnormal vessels into the back of the eye, leaving behind cholesterol deposits and damaging the retina. Coats' disease normally progresses slowly. At advanced stages, retinal detachment is likely to occur. Glaucoma, atrophy, and cataracts can also develop secondary to Coats' disease. In some cases, removal of the eye may be necessary (enucleation).
Diabetic retinopathy often has no early warning signs. Even macular edema, which can cause rapid vision loss, may not have any warning signs for some time. In general, however, a person with macular edema is likely to have blurred vision, making it hard to do things like read or drive. In some cases, the vision will get better or worse during the day.
In the first stage which is called non-proliferative diabetic retinopathy (NPDR) there are no symptoms, the signs are not visible to the eye and patients will have 20/20 vision. The only way to detect NPDR is by fundus photography, in which microaneurysms (microscopic blood-filled bulges in the artery walls) can be seen. If there is reduced vision, fluorescein angiography can be done to see the back of the eye. Narrowing or blocked retinal blood vessels can be seen clearly and this is called retinal ischemia (lack of blood flow).
Macular edema in which blood vessels leak their contents into the macular region can occur at any stage of NPDR. The symptoms of macular edema are blurred vision and darkened or distorted images that are not the same in both eyes. Ten percent (10%) of diabetic patients will have vision loss related to macular edema. Optical Coherence Tomography can show the areas of
retinal thickening (due to fluid accumulation) of macular edema.
In the second stage, abnormal new blood vessels (neovascularisation) form at the back of the eye as part of "proliferative diabetic retinopathy" (PDR); these can burst and bleed (vitreous hemorrhage) and blur the vision, because these new blood vessels are fragile. The first time this bleeding occurs, it may not be very severe. In most cases, it will leave just a few specks of blood, or spots floating in a person's visual field, though the spots often go away after a few hours.
These spots are often followed within a few days or weeks by a much greater leakage of blood, which blurs the vision. In extreme cases, a person may only be able to tell light from dark in that eye. It may take the blood anywhere from a few days to months or even years to clear from the inside of the eye, and in some cases the blood will not clear. These types of large hemorrhages tend to happen more than once, often during sleep.
On funduscopic exam, a doctor will see cotton wool spots, flame hemorrhages (similar lesions are also caused by the alpha-toxin of "Clostridium novyi"), and dot-blot hemorrhages.
Ocular causes include:
- Iritis
- Keratitis
- Blepharitis
- Optic disc drusen
- Posterior vitreous detachment
- Closed-angle glaucoma
- Transient elevation of intraocular pressure
- Intraocular hemorrhage
- Coloboma
- Myopia
- Orbital hemangioma
- Orbital osteoma
- Keratoconjunctivitis sicca
Ocular hypertension is the presence of elevated fluid pressure inside the eye (intraocular pressure), usually with no optic nerve damage or visual field loss.
For most individuals, the normal range of introcular pressure is between 10 mmHg and 21 mmHg. Elevated intraocular pressure is an important risk factor for glaucoma. The Ocular Hypertension Treatment Study, a large, multicentered, randomized clinical trial, determined that topical ocular hypotensive medication delays or prevents the onset of Primary Open-Angle Glaucoma. Accordingly, most individuals with consistently elevated intraocular pressures of greater than 21mmHg, particularly if they have other risk factors, are treated in an effort to prevent vision loss from glaucoma.
Ocular melanosis (OM), also known as ocular melanocytosis or melanosis oculi, is a congenital disease of the eye which affects about 1 in every 5000 people and is a risk factor for uveal melanoma. In dogs is found almost exclusively in the Cairn Terrier, where until recently it was known as pigmentary glaucoma. The disease is caused by an increase of melanocytes in the iris, choroid, and surrounding structures. Overproduction of pigment by these cells can block the trabecular meshwork through which fluid drains from the eye. The increased fluid in the eye leads to increased pressure, which can lead to glaucoma. In humans, this is sometimes known as pigment dispersion syndrome.
Patients may have no specific symptoms. In some cases, patients may complain of lessened visual acuity or changes in their perceived visual field, and such changes may be secondary to or different from symptoms normally associated with cataracts or glaucoma.
PEX is characterized by tiny microscopic white or grey granular flakes which are clumps of proteins within the eye which look somewhat like dandruff when seen through a microscope and which are released by cells. The abnormal flakes, sometimes compared to amyloid-like material, are visible during an examination of the lens of an eye by an ophthalmologist or optometrist, which is the usual diagnosis. The white fluffy material is seen in many tissues both ocular and extraocular, such as in the anterior chamber structures, trabecular meshwork, central disc, zonular fibres, anterior hyaloid membrane, pupillary and anterior iris, trabecula, and occasionally the cornea. The flakes are widespread. One report suggested that the granular flakes were from abnormalities of the basement membrane in epithelial cells, and that they were distributed widely throughout the body and not just within structures of the eye. There is some research suggesting that the material may be produced in the iris pigment epithelium, ciliary epithelium, or the peripheral anterior lens epithelium. A similar report suggests that the proteins come from the lens, iris, and other parts of the eye. A report in 2010 found indications of an abnormal ocular surface in PEX patients, discovered by an eye staining method known as rose bengal.
PEX can become problematic when the flakes become enmeshed in a "spongy area" known as the trabecular meshwork and block its normal functioning, and may interact with degenerative changes in the Schlemm's canal and the juxtacanalicular area. The blockage leads to greater-than-normal elevated intraocular pressure which, in turn, can damage the optic nerve. The eye produces a clear fluid called the aqueous humor which subsequently drains such that there is a constant level of safe pressure within the eye, but glaucoma can result if this normal outflow of fluid is blocked. Glaucoma is an umbrella term indicating ailments which damage the neural cable from the eye to the brain called the optic nerve, and which can lead to a loss of vision. In most cases of glaucoma, typically called "primary open-angle glaucoma", the outflow does not happen normally but doctors can not see what is causing the blockage; with PEX, however, the flakes are believed to be a cause of the blockage. PEX flakes by themselves do not directly "cause" glaucoma, but can cause glaucoma indirectly by blocking the outflow of aqueous humor, which leads to higher intraocular pressure, and this can cause glaucoma. PEX has been known to cause a weakening of structures within the eye which help hold the eye's lens in place, called lens zonules.
Buphthalmos in itself is merely a clinical sign and does not generate symptoms. Patients with glaucoma often initially have no symptoms; later, they can exhibit excessive tearing (lacrimation) and extreme sensitivity to light (photophobia). On ophthalmologic exam, one can detect increased intraocular pressure, distortion of the optic disc, and corneal edema, which manifests as haziness.
Other symptoms include a prominent eyeball, Haab's striae in the Descemet's membrane of the cornea, an enlarged cornea, and myopia.
Pseudoexfoliation syndrome, often abbreviated as PEX and sometimes as PES or PXS, is an aging-related systemic disease manifesting itself primarily in the eyes which is characterized by the accumulation of microscopic granular amyloid-like protein fibers. Its cause is unknown, although there is speculation that there may be a genetic basis. It is more prevalent in women than men, and in persons past the age of seventy. Its prevalence in different human populations varies; for example, it is prevalent in Scandinavia. The buildup of protein clumps can block normal drainage of the eye fluid called the aqueous humor and can cause, in turn, a buildup of pressure leading to glaucoma and loss of vision (pseudoexfoliation glaucoma, exfoliation glaucoma). As worldwide populations become older because of shifts in demography, PEX may become a matter of greater concern.
Neurological causes include:
- Optic neuritis
- Compressive optic neuropathies
- Papilledema: "The underlying mechanism for visual obscurations in all of these patients appear to be transient ischemia of the optic nerve head consequent to increased tissue pressure. Axonal swelling, intraneural masses, and increased influx of interstitial fluid may all contribute to increases in tissue pressure in the optic nerve head. The consequent reduction in perfusion pressure renders the small, low-pressure vessels that supply the optic nerve head vulnerable to compromise. Brief fluctuations in intracranial or systemic blood pressure may then result in transient loss of function in the eyes." Generally, this transient visual loss is also associated with a headache and optic disk swelling.
- Multiple Sclerosis can cause amaurosis fugax due to a unilateral conduction block, which is a result of demyelination and inflammation of the optic nerve, and "...possibly by defects in synaptic transmission and putative circulating blocking factors."
- Migraine
- Pseudotumor cerebri
- Intracranial tumor
- Psychogenic