Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Subjects' symptoms from non-compaction cardiomyopathy range widely. It is possible to be diagnosed with the condition, yet not to have any of the symptoms associated with heart disease. Likewise it possible to have severe heart failure, which even though the condition is present from birth, may only manifest itself later in life. Differences in symptoms between adults and children are also prevalent with adults more likely to have heart failure and children from depression of systolic function.
Common symptoms associated with a reduced pumping performance of the heart include:
- Breathlessness
- Fatigue
- Swelling of the ankles
- Limited physical capacity and exercise intolerance
Two conditions though that are more prevalent in noncompaction cardiomyopathy are: tachyarrhythmia which can lead to sudden cardiac death and clotting of the blood in the heart.
The clinical course of HCM is variable. Many people with HCM are asymptomatic or mildly symptomatic, and many of those carrying disease genes for HCM do not have clinically detectable disease. The symptoms and signs of HCM include shortness of breath due to stiffening and decreased blood filling of the ventricles, exertional chest pain (sometimes known as angina) due to reduced blood flow to the coronary arteries, uncomfortable awareness of the heart beat (palpitations), as well as disruption of the electrical system running through the abnormal heart muscle, lightheadedness, weakness, fainting and sudden cardiac death.
Dyspnea is largely due to increased stiffness of the left ventricle (LV), which impairs filling of the ventricles, but also leads to elevated pressure in the left ventricle and left atrium, causing back pressure and interstitial congestion in the lungs. Symptoms are not closely related to the presence or severity of an outflow tract gradient. Often, symptoms mimic those of congestive heart failure (esp. activity intolerance and dyspnea), but treatment of each is different. Beta blockers are used in both cases, but treatment with diuretics, a mainstay of CHF treatment, will exacerbate symptoms in hypertrophic obstructive cardiomyopathy by decreasing ventricular preload volume and thereby increasing outflow resistance (less blood to push aside the thickened obstructing tissue).
Major risk factors for sudden death in individuals with HCM include prior history of cardiac arrest or ventricular fibrillation, spontaneous sustained ventricular tachycardia, family history of premature sudden death, unexplained syncope, LV thickness greater than or equal to 30 mm, abnormal exercise blood pressure and nonsustained ventricular tachycardia.
For many people cardiomegaly is asymptomatic. For others, if the enlarged heart begins to affect the body's ability to pump blood effectively, then symptoms associated with congestive heart failure may arise.
- Heart palpitations – irregular beating of the heart, usually associated with a valve issue inside the heart.
- Severe shortness of breath (especially when physically active) – irregularly unable to catch one's breath.
- Chest pain
- Fatigue
- Swelling in legs
- Increased abdominal girth
- Weight gain
- Edema – swelling
- Fainting
Dilated cardiomyopathy develops insidiously, and may not initially cause symptoms significant enough to impact on quality of life. Nevertheless, many people experience significant symptoms. These might include:
- Shortness of breath
- Syncope (fainting)
- Angina, but only in the presence of ischemic heart disease
A person suffering from dilated cardiomyopathy may have an enlarged heart, with pulmonary edema and an elevated jugular venous pressure and a low pulse pressure. Signs of mitral and tricuspid regurgitation may be present.
Up to 80% of individuals with ARVD present have symptoms like syncope and dyspnea.The remainder frequently present with palpitations or other symptoms due to right ventricular outflow tract (RVOT) tachycardia (a type of monomorphic ventricular tachycardia).
Symptoms are usually exercise-related. In populations where hypertrophic cardiomyopathy is screened out prior to involvement in competitive athletics, it is a common cause of sudden cardiac death.
The first clinical signs of ARVD are usually during adolescence. However, signs of ARVD have been demonstrated in infants.
Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited heart disease.
ARVD is caused by genetic defects of the parts of heart muscle (also called "myocardium" or "cardiac muscle") known as desmosomes, areas on the surface of heart muscle cells which link the cells together. The desmosomes are composed of several proteins, and many of those proteins can have harmful mutations.
The disease is a type of nonischemic cardiomyopathy that involves primarily the right ventricle. It is characterized by hypokinetic areas involving the free wall of the right ventricle, with fibrofatty replacement of the right ventricular myocardium, with associated arrhythmias originating in the right ventricle.
ARVD can be found in association with diffuse palmoplantar keratoderma, and woolly hair, in an autosomal recessive condition called Naxos disease, because this genetic abnormality can also affect the integrity of the superficial layers of the skin most exposed to pressure stress.
ARVC/D is an important cause of ventricular arrhythmias in children and young adults. It is seen predominantly in males, and 30–50% of cases have a familial distribution.
Non-compaction cardiomyopathy (NCC), also called spongiform cardiomyopathy, is a rare congenital cardiomyopathy that affects both children and adults. It results from the failure of myocardial development during embryogenesis.
During development, the majority of the heart muscle is a sponge-like meshwork of interwoven myocardial fibers. As normal development progresses, these trabeculated structures undergo significant compaction that transforms them from spongy to solid. This process is particularly apparent in the ventricles, and particularly so in the left ventricle. Noncompaction cardiomyopathy results when there is failure of this process of compaction. Because the consequence of non-compaction is particularly evident in the left ventricle, the condition is also called left ventricular noncompaction. Other hypotheses and models have been proposed, none of which is as widely accepted as the noncompaction model.
Symptoms range greatly in severity. Most are a result of a poor pumping performance by the heart. The disease can be associated with other problems with the heart and the body.
Hypertrophic cardiomyopathy (HCM) is a condition in which a portion of the heart becomes thickened without an obvious cause. This results in the heart being less able to pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications include heart failure, an irregular heartbeat, and sudden cardiac death.
HCM is most commonly inherited from a person's parents. It is often due to mutations in certain genes involved with making heart muscle proteins. Other causes may include Fabry disease, Friedreich's ataxia, and certain medications such as tacrolimus. It is type of cardiomyopathy, a group of diseases that primarily affects the heart muscle. Diagnosis often involves an electrocardiogram, echocardiogram, and stress testing. Genetic testing may also be done.
Treatment may include the use of beta blockers, diuretics, or disopyramide. An implantable cardiac defibrillator may be recommended in those with certain types of irregular heartbeat. Surgery, in the form of a septal myectomy or heart transplant, may be done in those who do not improve with other measures. With treatment, the risk of death from the disease is less than one percent a year.
HCM affects about one in 500 people. Rates in men and women are about equal. People of all ages may be affected. The first modern description of the disease was by Donald Teare in 1958.
Cardiomegaly is a medical condition in which the heart is enlarged. It is more commonly referred to as an enlarged heart. The causes of cardiomegaly may vary. Many times this condition results from high blood pressure (hypertension) or coronary artery disease. An enlarged heart may not pump blood effectively, resulting in congestive heart failure. Cardiomegaly may improve over time, but many people with an enlarged heart need lifelong treatment with medications. Having an immediate family member who has or had cardiomegaly may indicate that a person is more susceptible to getting this condition. Cardiomegaly is not a disease but rather a condition that can result from a host of other diseases such as obesity or coronary artery disease. Recent studies suggest that cardiomegaly is associated with a higher risk of sudden cardiac death (SCD).
Signs and symptoms are related to type and severity of the heart defect. Symptoms frequently present early in life, but it is possible for some CHDs to go undetected throughout life. Some children have no signs while others may exhibit shortness of breath, cyanosis, fainting, heart murmur, under-development of limbs and muscles, poor feeding or growth, or respiratory infections. Congenital heart defects cause abnormal heart structure resulting in production of certain sounds called heart murmur. These can sometimes be detected by auscultation; however, not all heart murmurs are caused by congenital heart defects.
Boxer cardiomyopathy (also known as "Boxer arrhythmogenic right ventricular cardiomyopathy") is a disease of the myocardium primarily affecting Boxer dogs. It is characterized by the development of ventricular tachyarrhythmias, resulting in syncope and sudden cardiac death. Myocardial failure and congestive heart failure are uncommon manifestations of the disease.
Boxer cardiomyopathy is an adult-onset disease with three distinct clinical presentations:
The concealed form is characterized by an asymptomatic dog with premature ventricular contractions (PVCs).
The overt form is characterized by ventricular tachyarrhythmias and syncope. Dogs with overt disease may also have episodic weakness and exercise intolerance, but syncope is the predominant manifestation.
The third form, which is recognized much less frequently, is characterized by myocardial systolic dysfunction. This may result in left-sided, right-sided, or bi-ventricular congestive heart failure. It is not known if this form represents a separate clinical entity, or whether it is part of the continuum of disease.
Untreated hearts with RCM often develop the following characteristics:
- M or W configuration in an invasive hemodynamic pressure tracing of the RA
- Square root sign of part of the invasive hemodynamic pressure tracing Of The LV
- Biatrial enlargement
- Thickened LV walls (with normal chamber size)
- Thickened RV free wall (with normal chamber size)
- Elevated right atrial pressure (>12mmHg),
- Moderate pulmonary hypertension,
- Normal systolic function,
- Poor diastolic function, typically Grade III - IV Diastolic heart failure.
Those afflicted with RCM will experience decreased exercise tolerance, fatigue, jugular venous distention, peripheral edema, and ascites. Arrhythmias and conduction blocks are common.
Dilated cardiomyopathy (DCM) is a condition in which the heart becomes enlarged and cannot pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications can include heart failure, heart valve disease, or an irregular heartbeat.
Causes include genetics, alcohol, cocaine, certain toxins, complications of pregnancy, and certain infections. Coronary artery disease and high blood pressure may play a role, but are not the primary cause. In many cases the cause remains unclear. It is a type of cardiomyopathy, a group of diseases that primarily affects the heart muscle. The diagnosis may be supported by an electrocardiogram, chest X-ray, or echocardiogram.
In those with heart failure treatment may include medications in the ACE inhibitor, beta blocker, and diuretic families. A low salt diet may also be helpful. In those with certain types of irregular heartbeat, blood thinners or an implantable cardioverter defibrillator may be recommended. If other measures are not effective a heart transplant may be an option in some.
About 1 per 2,500 people are affected. It occurs more frequently in men than women. Onset is most often in middle age. Five-year survival rate is about 50%. It can also occur in children and is the most common type of cardiomyopathy in this age group.
Restrictive cardiomyopathy (RCM) is a form of cardiomyopathy in which the walls of the heart are rigid (but not thickened). Thus the heart is restricted from stretching and filling with blood properly. It is the least common of the three original subtypes of cardiomyopathy: hypertrophic, dilated, and restrictive.
It should not be confused with constrictive pericarditis, a disease which presents similarly but is very different in treatment and prognosis.
A congenital heart defect (CHD), also known as a congenital heart anomaly or congenital heart disease, is a problem in the structure of the heart that is present at birth. Signs and symptoms depend on the specific type of problem. Symptoms can vary from none to life-threatening. When present they may include rapid breathing, bluish skin, poor weight gain, and feeling tired. It does not cause chest pain. Most congenital heart problems do not occur with other diseases. Complications that can result from heart defects include heart failure.
The cause of a congenital heart defect is often unknown. Certain cases may be due to infections during pregnancy such as rubella, use of certain medications or drugs such as alcohol or tobacco, parents being closely related, or poor nutritional status or obesity in the mother. Having a parent with a congenital heart defect is also a risk factor. A number of genetic conditions are associated with heart defects including Down syndrome, Turner syndrome, and Marfan syndrome. Congenital heart defects are divided into two main groups: cyanotic heart defects and non-cyanotic heart defects, depending on whether the child has the potential to turn bluish in color. The problems may involve the interior walls of the heart, the heart valves, or the large blood vessels that lead to and from the heart.
Congenital heart defects are partly preventable through rubella vaccination, the adding of iodine to salt, and the adding of folic acid to certain food products. Some defects do not need treatment. Other may be effectively treated with catheter based procedures or heart surgery. Occasionally a number of operations may be needed. Occasionally heart transplantation is required. With appropriate treatment outcomes, even with complex problems, are generally good.
Heart defects are the most common birth defect. In 2015 they were present in 48.9 million people globally. They affect between 4 and 75 per 1,000 live births depending upon how they are diagnosed. About 6 to 19 per 1,000 cause a moderate to severe degree of problems. Congenital heart defects are the leading cause of birth defect-related deaths. In 2015 they resulted in 303,300 deaths down from 366,000 deaths in 1990.
Short QT syndrome is a genetic disease of the electrical system of the heart. It consists of a constellation of signs and symptoms, consisting of a short QT interval on an EKG (≤ 300 ms) that does not significantly change with heart rate, tall and peaked T waves, and a structurally normal heart. Short QT syndrome appears to be inherited in an autosomal dominant pattern, and a few affected families have been identified.
Cardiomyopathies can be classified using different criteria:
- Primary/intrinsic cardiomyopathies
- Genetic
- Hypertrophic cardiomyopathy
- Arrhythmogenic right ventricular cardiomyopathy (ARVC)
- LV non-compaction
- Ion Channelopathies
- Dilated cardiomyopathy (DCM)
- Restrictive cardiomyopathy (RCM)
- Acquired
- Stress cardiomyopathy
- Myocarditis
- Ischemic cardiomyopathy
- Secondary/extrinsic cardiomyopathies
- Metabolic/storage
- Fabry's disease
- hemochromatosis
- Endomyocardial
- Endomyocardial fibrosis
- Hypereosinophilic syndrome
- Endocrine
- diabetes mellitus
- hyperthyroidism
- acromegaly
- Cardiofacial
- Noonan syndrome
- Neuromuscular
- muscular dystrophy
- Friedreich's ataxia
- Other
- Obesity-associated cardiomyopathy
Cardiomyopathy is a group of diseases that affect the heart muscle. Early on there may be few or no symptoms. Some people may have shortness of breath, feel tired, or have swelling of the legs due to heart failure. An irregular heart beat may occur as well as fainting. Those affected are at an increased risk of sudden cardiac death.
Types of cardiomyopathy include hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular dysplasia, and takotsubo cardiomyopathy (broken heart syndrome). In hypertrophic cardiomyopathy the heart muscle enlarges and thickens. In dilated cardiomyopathy the ventricles enlarge and weaken. In restrictive cardiomyopathy the ventricle stiffens.
The cause is frequently unknown. Hypertrophic cardiomyopathy is often, and dilated cardiomyopathy in a third of cases is inherited from a person's parents. Dilated cardiomyopathy may also result from alcohol, heavy metals, coronary heart disease, cocaine use, and viral infections. Restrictive cardiomyopathy may be caused by amyloidosis, hemochromatosis, and some cancer treatments. Broken heart syndrome is caused by extreme emotional or physical stress.
Treatment depends on the type of cardiomyopathy and the degree of symptoms. Treatments may include lifestyle changes, medications, or surgery. In 2015 cardiomyopathy and myocarditis affected 2.5 million people. Hypertrophic cardiomyopathy affects about 1 in 500 people while dilated cardiomyopathy affects 1 in 2,500. They resulted in 354,000 deaths up from 294,000 in 1990. Arrhythmogenic right ventricular dysplasia is more common in young people.
Cardiac arrest is preceded by no warning symptoms in approximately 50% of people. For those who do, they have non specific symptoms such as, new or worsening chest pain, fatigue, blackouts, dizziness, shortness of breath, weakness, and vomiting.
When the arrest occurs, the most obvious sign of its occurrence will be the lack of a palpable pulse in the person experiencing it (since the heart has ceased to contract, the usual indications of its contraction such as a pulse will no longer be detectable). Certain types of prompt intervention can often reverse a cardiac arrest, but without such intervention the event will almost always lead to death. In certain cases, it is an expected outcome of a serious illness where death is expected.
Also, as a result of inadequate blood flow to the brain (cerebral perfusion), the patient will quickly become unconscious and will have stopped breathing. The main diagnostic criterion to diagnose a cardiac arrest (as opposed to respiratory arrest which shares many of the same features) is lack of circulation; however, there are a number of ways of determining this. Near-death experiences are reported by 10–20% of people who survived cardiac arrest.
Endocardial fibroelastosis (EFE) is a rare heart disorder usually occurring in children two years old and younger. It may also be considered a reaction to stress, not necessarily a specific disease.
It should not be confused with endomyocardial fibrosis.
Sudden cardiac arrest (SCA) and sudden cardiac death (SCD) occur when the heart abruptly begins to beat in an abnormal or irregular rhythm (arrhythmia). Without organized electrical activity in the heart muscle, there is no consistent contraction of the ventricles, which results in the heart's inability to generate an adequate cardiac output (forward pumping of blood from heart to rest of the body). There are many different types of arrhythmias, but the ones most frequently recorded in SCA and SCD are ventricular tachycardia (VT) or ventricular fibrillation (VF).
Sudden cardiac arrest can result from cardiac and non-cardiac causes including the following:
Many people with long QT syndrome have no signs or symptoms.
Some people may experience the following symptoms:
- Fainting (or syncope). This may occur when the patient is emotionally or physically stressed. It is unusual in QT syndrome to have any signs before the person actually faints.
- Seizures
- Sudden death. If there is sudden death, and doctors suspect long QT syndrome as the cause, they may recommend that the family members of the deceased get tested for the disease.
Athletic heart syndrome (AHS), also known as athlete's heart, athletic bradycardia, or exercise-induced cardiomegaly is a non-pathological condition commonly seen in sports medicine, in which the human heart is enlarged, and the resting heart rate is lower than normal.
The athlete's heart is associated with physiological remodeling as a consequence of repetitive cardiac loading. Athlete's heart is common in athletes who routinely exercise more than an hour a day, and occurs primarily in endurance athletes, though it can occasionally arise in heavy weight trainers. The condition is generally considered benign, but may occasionally hide a serious medical condition, or may even be mistaken for one.
Athlete's heart most often does not have any physical symptoms, although an indicator would be a consistently low resting heart rate. Athletes with AHS often do not realize they have the condition unless they undergo specific medical tests, because athlete's heart is a normal, physiological adaptation of the body to the stresses of physical conditioning and aerobic exercise. People diagnosed with athlete's heart commonly display three signs that would usually indicate a heart condition when seen in a regular person: bradycardia, cardiomegaly, and cardiac hypertrophy. Bradycardia is a slower than normal heartbeat, at around 40–60 beats per minute. Cardiomegaly is the state of an enlarged heart, and cardiac hypertrophy the thickening of the muscular wall of the heart, specifically the left ventricle, which pumps oxygenated blood to the aorta. Especially during an intensive workout, more blood and oxygen are required to the peripheral tissues of the arms and legs in highly trained athletes' bodies. A larger heart results in higher cardiac output, which also allows it to beat more slowly, as more blood is pumped out with each beat.
Another sign of athlete's heart syndrome is an S3 gallop, which can be heard through a stethoscope. This sound can be heard as the diastolic pressure of the irregularly shaped heart creates a disordered blood flow. However, if an S4 gallop is heard, the patient should be given immediate attention. An S4 gallop is a stronger and louder sound created by the heart, if diseased in any way, and is typically a sign of a serious medical condition.
Brugada syndrome (BrS) is a genetic condition that results in abnormal electrical activity within the heart, increasing the risk of sudden cardiac death. Those affected may have episodes of passing out. Typically this occurs when a person is at rest.
It is often inherited from a person's parent with about a quarter of people having a family history. Some cases may be due to a new mutation or certain medications. The abnormal heart rhythms can be triggered by a fever or increased vagal tone. Diagnosis is typically by electrocardiogram (ECG), however, the abnormalities may not be consistently present.
Treatment may be with an implantable cardioverter defibrillator (ICD). Isoproterenol may be used in those who are acutely unstable. In those without symptoms the risk of death is much lower, and how to treat this group is unclear. Testing people's family members may be recommended.
Between 1 and 30 per 10,000 people are affected. Onset of symptoms is usually in adulthood. It is more common in people of Asian descent. Males are more commonly affected than females. It is named after the Spanish cardiologists Pedro and Josep Brugada who described the condition in 1992. Their brother Ramon Brugada described the underlying genetics in 1998.