Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms are related to type and severity of the heart defect. Symptoms frequently present early in life, but it is possible for some CHDs to go undetected throughout life. Some children have no signs while others may exhibit shortness of breath, cyanosis, fainting, heart murmur, under-development of limbs and muscles, poor feeding or growth, or respiratory infections. Congenital heart defects cause abnormal heart structure resulting in production of certain sounds called heart murmur. These can sometimes be detected by auscultation; however, not all heart murmurs are caused by congenital heart defects.
Congenital heart defects are associated with an increased incidence of some other symptoms, together being called the VACTERL association:
- V — Vertebral anomalies
- A — Anal atresia
- C — Cardiovascular anomalies
- T — Tracheoesophageal fistula
- E — Esophageal atresia
- R — Renal (Kidney) and/or radial anomalies
- L — Limb defects
Ventricular septal defect (VSD), atrial septal defects, and tetralogy of Fallot are the most common congenital heart defects seen in the VACTERL association. Less common defects in the association are truncus arteriosus and transposition of the great arteries.
Abdominal organs, including the liver, stomach, intestinal tract, and spleen may be randomly arranged throughout the left-right axis of the body. Distribution of these organs largely dictates treatment, clinical outcomes, and further evaluation.
The liver is typically symmetrical across the left-right axis in patients with situs ambiguous, which is abnormal. A majority of left atrial isomeric patients have defects throughout the biliary tree, which is responsible for bile production, even when the gall bladder is functional and morphologically normal. This biliary atresia can lead to acute problems such as nutrient malabsorption, pale stools, dark urine, and abdominal swelling. If this condition continues without proper treatment, cirrhosis and liver failure become a major concern. Biliary atresia is not usually observed in patients with right atrial isomerism.
Random positioning of the stomach is often one of the first signals of situs ambiguous upon examination. Malrotation of the entire intestinal tract, or improper folding and bulging of the stomach and intestines, results in bowel obstruction. This impairment leads to vomiting, abdominal distention, mucus and blood in the stool. Patients may also experience abdominal pain. Intestinal malrotation is more commonly identified in patients with right atrial isomerism than in those with left atrial isomerism.
Isomeric patients often experience disruptions to splenic development during embryogenesis, resulting in an overall lack a spleen (asplenia) or development of many spleens (polysplenia). Asplenia is most often observed in patients with right atrial isomerism. Polysplenia results in 90% of patients with left atrial isomerism. Although they have many spleens, each is usually ineffective resulting in functional asplenia. Rarely, left atrial isomeric patients have a single, normal, functional spleen. Patients lacking a functional spleen are in danger of sepsis and must be monitored.
Up to 80% of individuals with ARVD present have symptoms like syncope and dyspnea.The remainder frequently present with palpitations or other symptoms due to right ventricular outflow tract (RVOT) tachycardia (a type of monomorphic ventricular tachycardia).
Symptoms are usually exercise-related. In populations where hypertrophic cardiomyopathy is screened out prior to involvement in competitive athletics, it is a common cause of sudden cardiac death.
The first clinical signs of ARVD are usually during adolescence. However, signs of ARVD have been demonstrated in infants.
There are a variety of clinical manifestations of situs ambiguous. Acute symptoms can be due to both cardiac and non-cardiac defects. Cyanosis or blue skin coloration, primarily affecting the lips and fingernails, can indicate a systemic or circulatory issue. Poor feeding, failure to thrive, and rapid shallow breathing may also be observed due to poor circulation. Upon examination, arrhythmia and heart murmur may raise further suspicion of a cardiac abnormality. Non-cardiac symptoms include impairments of the liver and gastrointestinal tract. Biliary atresia, or inflammation and destruction of the bile ducts, may lead to jaundice. Vomiting and swelling of the abdominal region are features that suggest improper positioning of the intestines. Poor positioning of the intestine also makes it more prone to blockage, which can result in numerous chronic health issues. Asplenia and polysplenia are also possible features of heterotaxy syndrome.
Due to abnormal cardiac development, patients with situs ambiguous usually develop right atrial isomerism consisting of 2 bilaterally paired right atria, or left atrial isomerism consisting of 2 bilaterally paired left atria. Clinical features and symptoms can vary dependent upon assignment of left versus right atrial isomerism. In either instance, the apex of the heart will be poorly positioned, which should alert a clinician of the likelihood of atrial isomerism. It is estimated that 5-10% of isomeric patients have mesocardia, in which the heart is positioned at the center of the thorax, 25-50% have dextrocardia, in which the apex of the heart is pointed toward the right side of the thorax, and 50 - 70% have levocardia, in which the apex of the heart is pointed toward the left side of the thorax.
Arrhythmogenic right ventricular dysplasia (ARVD) is an inherited heart disease.
ARVD is caused by genetic defects of the parts of heart muscle (also called "myocardium" or "cardiac muscle") known as desmosomes, areas on the surface of heart muscle cells which link the cells together. The desmosomes are composed of several proteins, and many of those proteins can have harmful mutations.
The disease is a type of nonischemic cardiomyopathy that involves primarily the right ventricle. It is characterized by hypokinetic areas involving the free wall of the right ventricle, with fibrofatty replacement of the right ventricular myocardium, with associated arrhythmias originating in the right ventricle.
ARVD can be found in association with diffuse palmoplantar keratoderma, and woolly hair, in an autosomal recessive condition called Naxos disease, because this genetic abnormality can also affect the integrity of the superficial layers of the skin most exposed to pressure stress.
ARVC/D is an important cause of ventricular arrhythmias in children and young adults. It is seen predominantly in males, and 30–50% of cases have a familial distribution.
An enlargement of the aorta may occur; an increased risk of abnormality is seen in babies of women taking lithium during the first trimester of pregnancy (though some have questioned this) and in those with Wolff-Parkinson-White syndrome.
Common symptoms include a grayish-blue (cyanosis) coloration to the skin, lips, fingernails and other parts of the body. Other pronounced symptoms can be rapid/difficulty breathing, poor feeding, cold hands or feet, or being inactive and drowsy. "In a baby with hypoplastic left heart syndrome, if the natural connections between the heart's left and right sides (foramen oval and ductus arteriosus) are allowed to close, he or she may go into shock." Signs of shock can include cool or clammy skin, a weak or rapid pulse, and dilated pupils.
While Ebstein's anomaly is defined as the congenital displacement of the tricuspid valve towards the apex of the right ventricle, it is often associated with other abnormalities.
Hypoplastic right heart syndrome is a congenital heart defect in which the right atrium and right ventricle are underdeveloped. This defect causes inadequate blood flow to the lungs and thus, a blue or cyanotic infant.[3]
Ventricular septal defect is usually symptomless at birth. It usually manifests a few weeks after birth.
VSD is an acyanotic congenital heart defect, aka a left-to-right shunt, so there are no signs of cyanosis in the early stage. However, uncorrected VSD can increase pulmonary resistance leading to the reversal of the shunt and corresponding cyanosis.
- Pansystolic (Holosystolic) murmur along lower left sternal border (depending upon the size of the defect) +/- palpable thrill (palpable turbulence of blood flow). Heart sounds are normal. Larger VSDs may cause a parasternal heave, a displaced apex beat (the palpable heartbeat moves laterally over time, as the heart enlarges). An infant with a large VSD will fail to thrive and become sweaty and tachypnoeic (breathe faster) with feeds.
The restrictive VSDs (smaller defects) are associated with a louder murmur and more palpable thrill (grade IV murmur). Larger defects may eventually be associated with pulmonary hypertension due to the increased blood flow. Over time this may lead to an Eisenmenger's syndrome the original VSD operating with a left-to-right shunt, now becomes a right-to-left shunt because of the increased pressures in the pulmonary vascular bed.
The clinical course of HCM is variable. Many people with HCM are asymptomatic or mildly symptomatic, and many of those carrying disease genes for HCM do not have clinically detectable disease. The symptoms and signs of HCM include shortness of breath due to stiffening and decreased blood filling of the ventricles, exertional chest pain (sometimes known as angina) due to reduced blood flow to the coronary arteries, uncomfortable awareness of the heart beat (palpitations), as well as disruption of the electrical system running through the abnormal heart muscle, lightheadedness, weakness, fainting and sudden cardiac death.
Dyspnea is largely due to increased stiffness of the left ventricle (LV), which impairs filling of the ventricles, but also leads to elevated pressure in the left ventricle and left atrium, causing back pressure and interstitial congestion in the lungs. Symptoms are not closely related to the presence or severity of an outflow tract gradient. Often, symptoms mimic those of congestive heart failure (esp. activity intolerance and dyspnea), but treatment of each is different. Beta blockers are used in both cases, but treatment with diuretics, a mainstay of CHF treatment, will exacerbate symptoms in hypertrophic obstructive cardiomyopathy by decreasing ventricular preload volume and thereby increasing outflow resistance (less blood to push aside the thickened obstructing tissue).
Major risk factors for sudden death in individuals with HCM include prior history of cardiac arrest or ventricular fibrillation, spontaneous sustained ventricular tachycardia, family history of premature sudden death, unexplained syncope, LV thickness greater than or equal to 30 mm, abnormal exercise blood pressure and nonsustained ventricular tachycardia.
Untreated hearts with RCM often develop the following characteristics:
- M or W configuration in an invasive hemodynamic pressure tracing of the RA
- Square root sign of part of the invasive hemodynamic pressure tracing Of The LV
- Biatrial enlargement
- Thickened LV walls (with normal chamber size)
- Thickened RV free wall (with normal chamber size)
- Elevated right atrial pressure (>12mmHg),
- Moderate pulmonary hypertension,
- Normal systolic function,
- Poor diastolic function, typically Grade III - IV Diastolic heart failure.
Those afflicted with RCM will experience decreased exercise tolerance, fatigue, jugular venous distention, peripheral edema, and ascites. Arrhythmias and conduction blocks are common.
Boxer cardiomyopathy is an adult-onset disease with three distinct clinical presentations:
The concealed form is characterized by an asymptomatic dog with premature ventricular contractions (PVCs).
The overt form is characterized by ventricular tachyarrhythmias and syncope. Dogs with overt disease may also have episodic weakness and exercise intolerance, but syncope is the predominant manifestation.
The third form, which is recognized much less frequently, is characterized by myocardial systolic dysfunction. This may result in left-sided, right-sided, or bi-ventricular congestive heart failure. It is not known if this form represents a separate clinical entity, or whether it is part of the continuum of disease.
Persistent truncus arteriosus (or Patent truncus arteriosus or Common arterial trunk), is a rare form of congenital heart disease that presents at birth. In this condition, the embryological structure known as the truncus arteriosus fails to properly divide into the pulmonary trunk and aorta. This results in one arterial trunk arising from the heart and providing mixed blood to the coronary arteries, pulmonary arteries, and systemic circulation.
Anatomical changes associated with this disorder includes:
- single artery arising from the two ventricles which gives rise to both the aortic and pulmonary vessels
- abnormal truncal valve
- right sided aortic arch in about 30% of cases (not shown)
- large ventricular septal defect
- pulmonary hypertension
- complete mixing occurring at level of the great vessel
- right-to-left shunting of blood
Shone's syndrome (also called Shone's Complex, Shone's Anomaly)is a rare congenital heart disease described by Shone in 1963. In the complete form, four left-sided defects are present:
- Supravalvular mitral membrane (SVMM)
- Parachute mitral valve
- Subaortic stenosis (membranous or muscular)
- Coarctation of the aorta
Of these four defects, supravalvular mitral membrane (SVMM) is the first to occur, and triggers the development of the other three defects. Partial complexes, or form fruste, have also been described. The definition is often expanded to include lesions of the left side of the heart not originally ascribed to Shone's syndrome, including mitral and aortic valvular lesions and supravalvular aortic stenosis.
The term parachute mitral valve stems from the morphological appearance of the valve; that is to say, the mitral valve leaflets appear as the canopy of the parachute, the chordae as the strings and the papillary muscle as the harness.
A ventricular septal defect (VSD) is a defect in the ventricular septum, the wall dividing the left and right ventricles of the heart. The extent of the opening may vary from pin size to complete absence of the ventricular septum, creating one common ventricle. The ventricular septum consists of an inferior muscular and superior membranous portion and is extensively innervated with conducting cardiomyocytes.
The membranous portion, which is close to the atrioventricular node, is most commonly affected in adults and older children in the United States. It is also the type that will most commonly require surgical intervention, comprising over 80% of cases.
Membranous ventricular septal defects are more common than muscular ventricular septal defects, and are the most common congenital cardiac anomaly.
Boxer cardiomyopathy (also known as "Boxer arrhythmogenic right ventricular cardiomyopathy") is a disease of the myocardium primarily affecting Boxer dogs. It is characterized by the development of ventricular tachyarrhythmias, resulting in syncope and sudden cardiac death. Myocardial failure and congestive heart failure are uncommon manifestations of the disease.
As discussed earlier, Shone’s syndrome is a rare disorder that is often detected in very young children. The children tend to show symptoms like fatigue, nocturnal cough, and reduced cardiac output by the age of two years. They also develop wheezing due to the exudation of fluid into the lungsCitation needed.
A triad of hypokalemic periodic paralysis, potentially fatal cardiac ventricular ectopy and characteristic physical features is known as Anderson-Tawil Syndrome. It affects the heart, symptoms are a disruption in the rhythm of the heart's lower chambers (ventricular arrhythmia) in addition to the symptoms of long QT syndrome. There are also physical abnormalities associated with Andersen–Tawil syndrome, these typically affect the head, face, and limbs. These features often include an unusually small lower jaw (micrognathia), low-set ears, and an abnormal curvature of the fingers called clinodactyly. Furthermore it causes symptoms which are similar to Long QT syndrome, which Andersen's is also known as. Long QT syndrome, a hereditary disorder that usually affects children or young adults, slows the signal that causes the ventricles to contract. Another electrical signal problem, atrial flutter, happens when a single electrical wave circulates rapidly in the atrium, causing a very fast but steady heartbeat. Heart block involves weak or improperly conducted electrical signals from the upper chambers that can't make it to the lower chambers, causing the heart to beat too slowly. These conditions can put you at risk for cardiac arrest. Treatment might involve medication, ablation, or an implanted device to correct the misfiring, such as a pacemaker or defibrillator. Here are some common physical abnormalities, but keep in mind these do vary (in severity) between each patient:
Some more severe issues can be caused via the potassium channelopathy. These include paralysis (mostly temporary and can last from several seconds to several minutes), inability to perform long distance/interval exercises and sudden exhaustion- although this can be a sign of cardiac arrhythmia- which should be immeditaley checked out by a GP, whether you have been diagnosed with ATS or not.
Restrictive cardiomyopathy (RCM) is a form of cardiomyopathy in which the walls of the heart are rigid (but not thickened). Thus the heart is restricted from stretching and filling with blood properly. It is the least common of the three original subtypes of cardiomyopathy: hypertrophic, dilated, and restrictive.
It should not be confused with constrictive pericarditis, a disease which presents similarly but is very different in treatment and prognosis.
Hypertrophic cardiomyopathy (HCM) is a condition in which a portion of the heart becomes thickened without an obvious cause. This results in the heart being less able to pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications include heart failure, an irregular heartbeat, and sudden cardiac death.
HCM is most commonly inherited from a person's parents. It is often due to mutations in certain genes involved with making heart muscle proteins. Other causes may include Fabry disease, Friedreich's ataxia, and certain medications such as tacrolimus. It is type of cardiomyopathy, a group of diseases that primarily affects the heart muscle. Diagnosis often involves an electrocardiogram, echocardiogram, and stress testing. Genetic testing may also be done.
Treatment may include the use of beta blockers, diuretics, or disopyramide. An implantable cardiac defibrillator may be recommended in those with certain types of irregular heartbeat. Surgery, in the form of a septal myectomy or heart transplant, may be done in those who do not improve with other measures. With treatment, the risk of death from the disease is less than one percent a year.
HCM affects about one in 500 people. Rates in men and women are about equal. People of all ages may be affected. The first modern description of the disease was by Donald Teare in 1958.
Cor triatriatum (or triatrial heart) is a congenital heart defect where the left atrium (cor triatriatum sinistrum) or right atrium (cor triatriatum dextrum) is subdivided by a thin membrane, resulting in three atrial chambers (hence the name).
Cor triatriatum represents 0.1% of all congenital cardiac malformations and may be associated with other cardiac defects in as many as 50% of cases. The membrane may be complete or may contain one or more fenestrations of varying size.
Cor triatrium sinistrum is more common. In this defect there is typically a proximal chamber that receives the pulmonic veins and a distal (true) chamber located more anteriorly where it empties into the mitral valve. The membrane that separates the atrium into two parts varies significantly in size and shape. It may appear similar to a diaphragm or be funnel-shaped, bandlike, entirely intact (imperforate) or contain one or more openings (fenestrations) ranging from small, restrictive-type to large and widely open.
In the pediatric population, this anomaly may be associated with major congenital cardiac lesions such as tetralogy of Fallot, double outlet right ventricle, coarctation of the aorta, partial anomalous pulmonary venous connection, persistent left superior vena cava with unroofed coronary sinus, ventricular septal defect, atrioventricular septal (endocardial cushion) defect, and common atrioventricular canal. Rarely, asplenia or polysplenia has been reported in these patients.
In the adult, cor triatriatum is frequently an isolated finding.
Cor triatriatum dextrum is extremely rare and results from the complete persistence of the right sinus valve of the embryonic heart. The membrane divides the right atrium into a proximal (upper) and a distal (lower) chamber. The upper chamber receives the venous blood from both vena cavae and the lower chamber is in contact with the tricuspid valve and the right atrial appendage.
The natural history of this defect depends on the size of the communicating orifice between the upper and lower atrial chambers. If the communicating orifice is small, the patient is critically ill and may succumb at a young age (usually during infancy) to congestive heart failure and pulmonary edema. If the connection is larger, patients may present in childhood or young adulthood with a clinical picture similar to that of mitral stenosis. Cor triatriatum may also be an incidental finding when it is nonobstructive.
The disorder can be treated surgically by removing the membrane dividing the atrium.
In many cases, a bicuspid aortic valve will cause no problems. People with BAV may become tired more easily than those with normal valvular function and have difficulty maintaining stamina for cardio-intensive activities due to poor heart performance.