Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The signs and symptoms of DOCK8 deficiency are similar to the autosomal dominant form, STAT3 deficiency. However, in DOCK8 deficiency, there is no skeletal or connective tissue involvement, and affected individuals do not have the characteristic facial features of those with autosomal dominant hyper-IgE syndrome. DOCK8 deficient children often have eczema, respiratory and skin staphylococcus infections.
Beyond these, many other recurrent infections have been observed, including recurrent fungal infections and recurrent viral infections (including molluscum contagiosum, herpes simplex, and herpes zoster), recurrent upper respiratory infection (including "Streptococcus pneumoniae", "Haemophilus influenzae", respiratory syncytial virus, and adenovirus), recurrent sinusitis, recurrent otitis media, mastoiditis, pneumonia, bronchitis with bronchiectasis, osteomyelitis, candidiasis, meningitis (caused by cryptococcus or H. influenzae), pericarditis, salmonella enteritis, and giardiasis. Other dermatologic problems include squamous-cell carcinoma/dysplasia (vulvar, anal, and facial). Immune problems are also common, including autoimmune hemolytic anemia, severe allergies (both food and environmental), asthma, and reactive airway disease. The nervous system may also be affected; observed conditions in DOCK8 deficient people include hemiplegia, ischemic stroke, subarachnoid hemorrhage, and facial paralysis. Vascular complications are common, including aortic aneurysm, cerebral aneurysm, vessel occlusion and underperfusion, and leukocytoclastic vasculitis.
The disorder is characterized by:
- severe salt-independent but age-dependent hypertension
- brachydactyly malformations of the hands and fingers
- increased fibroblast growth rate
- neurovascular contact at the rostral-ventrolateral medulla
- altered baroreflex blood pressure regulation
- death from stroke before age 50 years when untreated
SLOS can present itself differently in different cases, depending on the severity of the mutation and other factors. Originally, SLOS patients were classified into two categories (classic and severe) based on external behaviours, physical characteristics, and other clinical features. Since the discovery of the specific biochemical defect responsible for SLOS, patients are given a severity score based on their levels of cerebral, ocular, oral, and genital defects. It is then used to classify patients as having mild, classical, or severe SLOS.
Familial Isolated Vitamin E Deficiency also known as Ataxia With Vitamin E Deficiency is a rare autosomal recessive neurodegenerative disease. Symptoms are similar to those of Friedreich ataxia.
Hypertension and brachydactyly syndrome (HTNB) also known as Bilginturan syndrome and brachydactyly type E among others is a very rare genetic disorder.
It was first reported in 1973 by N. Bilginturan et al. The estimated prevalence is less than 1 out of 1,000,000.
The most common facial features of SLOS include microcephaly, bitemporal narrowing (reduced distance between temples), ptosis, a short and upturned nose, micrognathia, epicanthal folds, and capillary hemangioma of the nose. Other physical characteristics include:
- low-set and posteriorly rotated ears
- high-arched, narrow, hard palate
- cleft lip/palate
- agenesis or hypoplasia of the corpus callosum
- cerebellar hypoplasia
- increased ventricular size
- decreased frontal lobe size
- polydactyly of hands or feet
- short, proximally placed thumb
- other finger malformations
- syndactyly of second and third toes
- ambiguous or female-like male genitalia
- congenital heart defects
- renal, pulmonary, liver and eye abnormalities
Symptoms which can return over the following month include:
- Flu-like symptoms
- Fatigue
- Fever
- Abdominal pain
- Strong headaches similar to migraines
- Nausea
- Vomiting
- Diarrhea
- Lack of concentration
- Appetite loss
- Depression
- Jaundice, a yellowing of the skin or whites of the eyes
- Sharp pains in the right-upper quadrant of the abdomen
- Weight loss
X-linked recessive chondrodysplasia punctata is a type of chondrodysplasia punctata that can involve the skin, hair, and cause short stature with skeletal abnormalities, cataracts, and deafness.
This condition is also known as arylsulfatase E deficiency, CDPX1, and X-linked recessive chondrodysplasia punctata 1. The syndrome rarely affects females, but they can be carriers of the recessive allele. Although the exact number of people diagnosed with CDPX1 is unknown, it was estimated that 1 in 500,000 have CDPX1 in varying severity. This condition is not linked to a specific ethnicity. The mutation that leads to a deficiency in arylsulfatase E. (ARSE) occurs in the coding region of the gene.Absence of stippling, deposits of calcium, of bones and cartilage, shown on x-ray, does not rule out chondrodysplasia punctata or a normal chondrodysplasia punctata 1 (CDPX1) gene without mutation. Stippling of the bones and cartilage is rarely seen after childhood. Phalangeal abnormalities are important clinical features to look for once the stippling is no longer visible. Other, more severe, clinical features include respiratory abnormalities, hearing loss, cervical spine abnormalities, delayed cognitive development, ophthalmologic abnormalities, cardiac abnormalities, gastroesophageal reflux, and feeding difficulties. CDPX1 actually has a spectrum of severity; different mutations within the CDPX1 gene have different effects on the catalytic activity of the ARSE protein. The mutations vary between missense, nonsense, insertions, and deletions.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
In the months following birth, signs and symptoms will appear. Some symptoms will manifest gradually during childhood.
- Failure to gain weight
- Failure to thrive
- Diarrhea
- Foul-smelling feces, steatorrhea
- Impaired nervous system functions
- Decreased reflexes, hyporeflexia
Familial Isolated Vitamin E Deficiency is caused by mutations in the gene for a-tocopherol transfer protein.
This condition occurs almost exclusively in males. The mutation may be spontaneous or inherited from the mother. The typical clinical features are:
- flat nasal tip
- short columella
- maxillary hypoplasia
- involvement of terminal phalanges
- stippled chondrodystrophy
Hereditary diffuse gastric cancer is inherited as an autosomal dominant mutation of the E-cadherin gene (CDH1), which is located on chromosome 16q22.1.
Surgical removal of the stomach (gastrectomy) is typically recommended after for people after 20 years of age, and before 40 years of age.
Galactokinase deficiency, also known as Galactosemia type 2 or GALK deficiency, is an autosomal recessive metabolic disorder marked by an accumulation of galactose and galactitol secondary to the decreased conversion of galactose to galactose-1-phosphate by galactokinase. The disorder is caused by mutations in the GALK1 gene, located on chromosome 17q24. Galactokinase catalyzes the first step of galactose phosphorylation in the Leloir pathway of intermediate metabolism. Galactokinase deficiency is one of the three inborn errors of metabolism that lead to hypergalactosemia. The disorder is inherited as an autosomal recessive trait. Unlike classic galactosemia, which is caused by deficiency of galactose-1-phosphate uridyltransferase, galactokinase deficiency does not present with severe manifestations in early infancy. Its major clinical symptom is the development of cataracts during the first weeks or months of life, as a result of the accumulation, in the lens, of galactitol, a product of an alternative route of galactose utilization. The development of early cataracts in homozygous affected infants is fully preventable through early diagnosis and treatment with a galactose-restricted diet. Some studies have suggested that, depending on milk consumption later in life, heterozygous carriers of galactokinase deficiency may be prone to presenile cataracts at 20–50 years of age.
Often symptoms will arise that indicate the body is not absorbing or making the lipoproteins that it needs. These symptoms usually appear "en masse", meaning that they happen all together, all the time. These symptoms come as follows:
- Failure to thrive/Failure to grow in infancy
- Steatorrhea/Fatty, pale stools
- Frothy stools
- Foul smelling stools
- Protruding abdomen
- Intellectual disability/developmental delay
- Developmental coordination disorder, evident by age ten
- Muscle weakness
- Slurred speech
- Scoliosis (curvature of the spine)
- Progressive decreased vision
- Balance and coordination problems
The distinction between complications of hepatitis X and symptoms of hepatitis X is often obscure. While jaundice (yellow discoloration of the skin or whites of the eyes due to an increase of bile pigments in the blood), is a symptom of hepatitis, it is also a complication. Further complications that may arise include hyperpigmentation, renal (kidney) failure, and CSF xanthochromia. Liver disease is another fatal complication of hepatitis X. This could potentially lead to abdominal pain, hepatomegaly, splenomegaly, chest pain, and an altered bowel habit.
Galactokinase deficiency is an autosomal recessive disorder, which means the defective gene responsible for the disorder is located on an autosome (chromosome 17 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Unlike galactose-1-phosphate uridyltransferase deficiency, the symptoms of galactokinase deficiency are relatively mild. The only known symptom in affected children is the formation of cataracts, due to production of galactitol in the lens of the eye. Cataracts can present as a failure to develop a social smile and failure to visually track moving objects.
A Rosenthal fiber is a thick, elongated, worm-like or "corkscrew" eosinophilic (pink) bundle that is found on H&E staining of the brain in the presence of long-standing gliosis, occasional tumors, and some metabolic disorders.
Mees' lines appear after an episode of poisoning with arsenic, thallium or other heavy metals, and can also appear if the subject is suffering from renal failure. They have been observed in chemotherapy patients.
Its presence is associated with either pilocytic astrocytoma (more common) or Alexander's disease (a rare leukodystrophy). They are also seen in the context of fucosidosis.
Pilocytic astrocytoma is the most common primitive tumor in pediatric patients.
Boron deficiency is a pathology which may occur in animals due to a lack of boron. A report given by E. Wayne Johnson et al. at the 2005 Alan D. Leman Swine Conference suggests that boron deficiency produces osteochondrosis in swine that is correctable by addition of 50 ppm of boron to the diet. The amount of boron required by animals and humans is not yet well established.
They are typically white bands traversing the width of the nail. As the nail grows they move towards the end, and finally disappear when trimmed.
frequency:- rare type of cyst
It can occur at any age, mostly between 2nd and 3rd decade of life.
Diameter is 2 to 4 cm
swelling pain maybe present.
intra bony expansions may produce hard bony expansion.
may perforate cortical bones
also it extends to soft tissue
maybe asymptomatic
Abetalipoproteinemia affects the absorption of dietary fats, cholesterol, and certain vitamins. People affected by this disorder are not able to make certain lipoproteins, which are molecules that consist of proteins combined with cholesterol and particular fats called triglycerides. This leads to a multiple vitamin deficiency, affecting the fat-soluble vitamin A, vitamin D, vitamin E, and vitamin K. However, many of the observed effects are due to vitamin E deficiency in particular.
The signs and symptoms of abetalipoproteinemia appear in the first few months of life (because pancreatic lipase is not active in this period). They can include failure to gain weight and grow at the expected rate (failure to thrive); diarrhea; abnormal spiny red blood cells (acanthocytosis); and fatty, foul-smelling stools (steatorrhea). The stool may contain large chunks of fat and/or blood. Other features of this disorder may develop later in childhood and often impair the function of the nervous system. They can include poor muscle coordination, difficulty with balance and movement (ataxia), and progressive degeneration of the retina (the light-sensitive layer in the posterior eye) that can progress to near-blindness (due to deficiency of vitamin A, retinol). Adults in their thirties or forties may have increasing difficulty with balance and walking. Many of the signs and symptoms of abetalipoproteinemia result from a severe vitamin deficiency, especially vitamin E deficiency, which typically results in eye problems with degeneration of the spinocerebellar and dorsal column tracts.