Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
All types of Griscelli syndrome have distinctive skin and hair coloring.
Type 1 is associated with eurological abnormalities. These include delayed development, intellectual disability, seizures, hypotonia and eye abnormalities.
Type 2 - unlike type 1 - is not associated primary neurological disease but is associated with an uncontrolled T lymphocyte expansion and macrophage activation syndrome. It is often associated with the hemophagocytic syndrome. This latter condition may be fatal in the absence of bone marrow transplantation.
Persons with type 3 have the typical light skin and hair coloring but are otherwise normal.
One of the principle symptoms of GAPO syndrome is growth retardation, caused by slow skeletal formation and results in individuals being below average height. Alopecia, or hair loss, is another key indication of GAPO syndrome. Their hair is typically thinly dispersed, and fragile, which often leads to baldness later in life. Similarly, tooth growth is stunted, with teeth failing to emerge form the gums or otherwise develop normally. Atrophy of the optic nerve occurs in approximately one third of individuals. This degradation leads to inhibited peripheral vision, and increased difficulty distinguishing colours.
While not a defining feature, most sufferers of GAPO syndrome have coarse facial features, and abnormal structure of the middle portion of their faces, typically coupled with a large forehead. Individuals with the disease tend to have depressed nose bridges, protruding ears, and abnormally thick lips, though these symptoms are not unique to this disorder.
No direct correlation has been found between GAPO syndrome and mental retardation, though cases of individuals having both have been reported.
Due to the severity of the phenotype, GAPO syndrome can be diagnosed very early on. Most cases can be diagnosed by 6 months of age, and most symptoms will be apparent by age 2.
Symptoms for Alström syndrome generally appear during infancy with great variability in age. Some of the symptoms include:
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.
- Light sensitivity and vision problems (Cone-rod dystrophy) in all cases, usually within 15 months of birth and progressively worsening until about 20 years of age
- Delays in early, developmental milestones in 50% of cases, learning disabilities in about 30% of cases
- Obesity in 100% of cases, apparent by 5 years of age, but often apparent in infancy (Alström infants usually have normal birth weights, and by adolescence, weights tend to be in the high-normal to normal range)
- Nystagmus (usually affects the children) one of the first symptoms to occur which causes involuntary rapid eye movement.
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.(chronic)
- Mild to moderate bilateral sensorineural hearing loss.
- Type 2 diabetes usually occurs in early childhood.
- Hyperinsulinemia/ insulin resistance—development of high level of insulin in blood.
- Steatosis (fatty liver) and elevated transaminases (liver enzymes) often develop in childhood and can progress in some patients to cirrhosis and liver failure.
- Endocrine dysfunctions may occur where the patient may experience an under or over active thyroid gland, weak growth hormone, increased androgen in females, and low testosterone in males.
- Slowly progressive kidney failure can occur in the second to fourth decade of life.
Affected individuals present with a broad array of medical and behavioral manifestations (tables 1 and 2). Patients are consistently characterized by global developmental delay, intellectual disability, speech abnormalities, ASD-like behaviors, hypotonia and mild dysmorphic features. Table 1 summarizes the dysmorphic and medical conditions that have been reported in individuals with PMS. Table 2 summarize the psychiatric and neurological associated with PMS. Most of the studies include small samples or relied on parental report or medical record review to collect information, which can account in part for the variability in the presentation of some of the presenting features. Larger prospective studies are needed to further characterize the phenotype.
Table 1: Dysmorphic features and medical comorbid conditions that have been reported in individuals with Phelan McDermid Syndrome.
Table 2: Psychiatric and Neurologic Manifestations associated with Phelan McDermid Syndrome
GAPO syndrome is a rare, autosomal recessive disorder that causes severe growth retardation, and has been observed fewer than 30 times before 2011. GAPO is an acronym that encompasses the predominant traits of the disorder: growth retardation, alopecia, pseudoanodontia (teeth failing to emerge from the gums), and worsening optic atrophy in some subjects. Other common symptoms include premature aging, large, prominent foreheads, and delayed bone aging. GAPO syndrome typically results in premature death around age 30-40, due to interstitial fibrosis and atherosclerosis.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
The symptoms of Hunter syndrome (MPS II) are generally not apparent at birth, but usually start to become noticeable after the first year of life. Often, the first symptoms may include abdominal hernias, ear infections, runny noses, and colds. Since these symptoms are quite common among all infants, they are not likely to lead a doctor to make a diagnosis of Hunter syndrome right away. As the buildup of glycosaminoglycans (GAGs) continues throughout the cells of the body, signs of Hunter syndrome become more visible. Physical appearances of many children with Hunter syndrome include a distinctive coarseness in their facial features, including a prominent forehead, a nose with a flattened bridge, and an enlarged tongue. For this reason, unrelated children with Hunter syndrome often look alike. They may also have a large head, as well as an enlarged abdomen. Many continue to have frequent infections of the ears and respiratory tract.
The continued storage of GAGs in cells can lead to organs being affected in important ways. The thickening of the heart valves along with the walls of the heart can result in progressive decline in cardiac function. The walls of the airway may become thickened, as well, leading to breathing problems while sleeping (obstructive airway disease) and noisy breathing generally. People with Hunter syndrome may also have limited lung capacity due to pulmonary involvement. As the liver and spleen grow larger with time, the belly may become distended, making hernias more noticeable. All major joints (including the wrists, elbows, shoulders, hips, and knees) may be affected by Hunter syndrome, leading to joint stiffness and limited motion. Progressive involvement of the finger and thumb joints results in decreased ability to pick up small objects. The effects on other joints, such as hips and knees, can make walking normally increasingly difficult. If carpal tunnel syndrome develops, a common symptom even in young children with Hunter syndrome, a further decrease in hand function can occur. The bones themselves may be affected, resulting in short stature. In addition, pebbly, ivory-colored skin lesions may be found on the upper arms, legs, and upper back of some people with Hunter syndrome. The presence or absence of the skin lesions is not helpful, however, in predicting clinical severity in Hunter syndrome. Finally, the storage of GAGs in the brain can lead to delayed development with subsequent mental retardation and progressive loss of function. The rate and degree of progression is different for each person with Hunter syndrome.
Although Hunter syndrome is associated with a broad spectrum of clinical severity, two main forms can be recognized - severe and mild/attenuated. The differences between the severe and attenuated forms are due mainly to the progressive development of neurodegeneration in the severe form. Though the terms "attenuated" or "mild" are used by physicians in comparing people with Hunter syndrome, the effects of even mild disease are quite serious. Between the two main forms of disease, and even within them, two of the most significant areas of variability concern the degree of mental retardation and expected lifespan. Some people who have Hunter syndrome experience no mental handicaps and live into their 20s or 30s, with occasional reports of people who have lived into their 50s or 60s. Since the implementation of enzyme replacement therapy for Hunter syndrome, lifespans for those without mental handicaps are expected to lengthen since their physical disease appears to improve or stabilize with such treatment. The quality of life remains high in a large number of people, and many adults are actively employed.
In contrast, others with Hunter syndrome develop severe mental impairment and have life expectancies of 15 years or less, often due to neurodegeneration or physical complications from the disease. The age at onset of symptoms and the presence/absence of behavioral disturbances are predictive factors of ultimate disease severity in very young patients. Behavioral disturbances can often mimic combinations of symptoms of attention deficit hyperactivity disorder, autism, obsessive compulsive disorder, and/or sensory processing disorder, although the existence and level of symptoms differ in each affected child. They often also include a lack of an appropriate sense of danger, and aggression. The behavioral symptoms of Hunter syndrome generally precede neurodegeneration and often increase in severity until the mental handicaps become more pronounced.
This autosomal dominant disorder is characterized by a number of health defects including Hirschsprung's disease, intellectual disability, epilepsy, delayed growth and motor development, congenital heart disease, genitourinary anomalies and absence of the corpus callosum. However, Hirschsprung's disease is not present in all infants with Mowat–Wilson syndrome and therefore it is not a required diagnostic criterion. Distinctive physical features include microcephaly, narrow chin, cupped ears with uplifted lobes with central depression, deep and widely set eyes, open mouth, wide nasal bridge and a shortened philtrum.
Alström syndrome, also called Alstrom-Halgren syndrome, is a rare genetic disorder caused by mutations in the gene ALMS1. It is among the rarest genetic disorders in the world, as currently it has only 266 reported cases in medical literature and over 501 known cases in 47 countries. It was first described by Carl-Henry Alström in Sweden in 1959. Alstrom syndrome is sometimes confused with Bardet-Biedl syndrome, which has similar symptoms. Bardet-Biedl syndrome tends to have later onset in its symptoms. The likelihood of two carrier parents both passing the gene and therefore having a child affected by the syndrome is 25% with each pregnancy. The likelihood of having a child who is only a carrier of the gene is 50% with each pregnancy. The likelihood of a child receiving normal genes from both parents and being considered to be "genetically" normal is 25%. The risk for carrying the gene is equivalent for both males and females.
"Alström syndrome (AS) is a rare autosomal recessive disease characterized by multiorgan dysfunction. The key features are childhood obesity, blindness due to congenital retinal dystrophy, and sensorineural hearing loss. Associated endocrinologic features include hyperinsulinemia, early-onset type 2 diabetes, and hypertriglyceridemia."
Thus, AS shares several features with the common metabolic syndrome, namely obesity, hyperinsulinemia, and hypertriglyceridemia. Mutations in the ALMS1 gene have been found to be causative for AS with a total of 79 disease-causing mutations having been described." Prevalence estimates have ranged from 1 in 10,000 to fewer than 1 in 1,000,000 individuals in the general population.
22q13 deletion syndrome (spoken as "twenty-two q one three", see Locus (genetics)) is a genetic disorder caused by deletions or rearrangements on the q terminal end (long arm) of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. 22q13 deletion syndrome is often called Phelan-McDermid syndrome (abbreviated PMS). There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by "SHANK3" mutations, a definition that appears to exclude terminal deletions. The requirement to include "SHANK3" in the definition is supported by many, but not by those who first described 22q13 deletion syndrome.
A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small. The availability of DNA microarray technology for revealing multiple genetic problems simultaneously has been the diagnostic tool of choice. The falling cost for whole exome sequencing and, eventually, whole genome sequencing, may replace DNA microarray technology for candidate evaluation. However, fluorescence in situ hybridization (FISH) tests remain valuable for diagnosing cases of mosaicism (mosaic genetics) and chromosomal rearrangements (e.g., ring chromosome, unbalanced chromosomal translocation). Although early researchers sought a monogenic (single gene genetic disorder) explanation, recent studies have not supported that hypothesis (see Etiology, below).
Galloway Mowat syndrome is a very rare autosomal recessive genetic disorder, consisting of a variety of features including hiatal hernia, microcephaly and nephrotic syndrome.
Approximately 100 cases have been described in the literature to date.
The facial features are characteristic and include
- Deep set eyes
- Strabismus
- Myopia
- Marked nasal root
- Broad and/or beaked nasal bridge
- Prominent Cupid's bow
- Everted lower lip
- Tented upper lip
- Large mouth
- Widely spaced teeth
- Wide and shallow palate
- Ears with thick and overfolded helix
Most have a smiling appearance.
Intellectual disability is severe. Language is absent or limited to only a few words. Stereotypic movements particularly of the arms, wrists and fingers is almost universal. Hypotonia is common (75%) as is an unsteady gait. All have delayed walking. Other features include a single (simian) palmar crease, long, slender fingers, flat feet and cryptorchidism (in males). Finger clubbing and the presence of fetal pads is common. Hyperventilation occurs in over half and is frequently followed by apnea and cyanosis. During these episodes aerophagia may occur. Constipation is common. Microcephaly and seizures may occur. Hypopigmented skin macules have occasionally been reported.
The fifth type of hyper-IgM syndrome has been characterized in three patients from France and Japan. The symptoms are similar to hyper IgM syndrome type 2, but the AICDA gene is intact. These three patients instead had mutations in the catalytic domain of uracil-DNA glycosylase, an enzyme that removes uracil from DNA. In both type 2 and type 5 hyper-IgM syndromes, the patients are profoundly deficient in IgG and IgA because the B cells can't carry out the recombination steps necessary to class-switch.
Almost all patients with this syndrome have some degree of mental retardation and facial dysmorphism (round face, deep-set eyes, thin upper lip). Behavioural problems are common. Brachymetaphalangism (metacarpal or metatarsal shortening) is reported in ~50% of cases overall, but is typically not evident below the age of 2 years. There is striking phenotypic variability, and the size and extent of the deleted region cannot be used as accurate predictors of prognosis. Some patients have additional problems such as congenital heart disease and seizures.
2q37 monosomy is a rare genetic disorder caused by a deletion of a segment at the end of chromosome 2.
Mowat–Wilson syndrome is a rare genetic disorder that was clinically delineated by Dr. D. R. Mowat and Dr. M. J. Wilson in 1998.
Acrocallosal syndrome (also known as ACLS) is a rare autosomal recessive syndrome characterized by corpus callosum agenesis, polydactyly, multiple dysmorphic features, motor and mental retardation, and other symptoms. The syndrome was first described by Albert Schinzel in 1979.
It is associated with "GLI3".
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
Children with Weaver syndrome tend to look similar and have distinctive physical and craniofacial characteristics, which may include several, but not all of the following features:
- Macrocephaly
- Large bifrontal diameter
- Flattened occiput
- Long philtrum
- Retrognathia
- Round face in infancy
- Prominent chin crease
- Large ears
- Strabismus
- Hypertelorism
- Epicanthal folds
- Downslanting palpebral fissures
Other features may include loose skin, thin deep-set nails, thin hair, short ribs, limited elbow and knee extension, camptodactyly, and a coarse, low-pitched voice. Delayed development of motor skills such as sitting, standing, and walking are commonly exhibited in early childhood. Patients with Weaver syndrome typically have mild intellectual disability with poor coordination and balance. They also have some neurological abnormalities such as speech delay, epilepsy, intellectual disability, hypotonia or hypertonia, and behavioral problems.
Symptoms of Winchester syndrome begin with the deterioration of bone within the hands and feet. This loss of bone causes pain and limited mobility. The abnormalities of the bone spread to other areas of the body, mostly the joints. This causes arthropathy: stiffening of the joints (contractures) and swollen joints. Many people develop osteopenia and osteoporosis throughout their entire body. Due to the damage to the bones, many affected individuals suffer from short stature and bone fractures.
Many individuals experience leathery skin where the skin appears dark and thick. Excessive hair growth is known to be found in these darker areas of the skin (hypertrichosis). The eyes may develop a white or clear covering the cornea (corneal opacities) which can cause problems with vision.
Differential diagnosis includes Angelman syndrome, Mowat–Wilson syndrome and Rett syndrome.
Hunter syndrome, or mucopolysaccharidosis II (MPS II), is a serious genetic disorder that primarily affects males (X-linked recessive). It interferes with the body's ability to break down and recycle specific mucopolysaccharides, also known as glycosaminoglycans or GAGs. Hunter syndrome is one of several related lysosomal storage diseases called the MPS diseases.
In Hunter syndrome, GAGs build up in cells throughout the body due to a deficiency or absence of the enzyme iduronate-2-sulfatase (I2S). This buildup interferes with the way certain cells and organs in the body function and leads to a number of serious symptoms. As the buildup of GAG continues throughout the cells of the body, signs of Hunter syndrome become more visible. Physical manifestations for some people with Hunter syndrome include distinct facial features and large head. In some cases of Hunter syndrome, central nervous system involvement leads to developmental delays and nervous system problems. Not all people with Hunter syndrome are affected by the disease in the same way, and the rate of symptom progression varies widely. However, Hunter syndrome is always severe, progressive, and life-limiting, even when diagnosed as the "mild" or "attenuated" form.
X-linked intellectual disability (previously known as X-linked mental retardation) refers to forms of intellectual disability which are specifically associated with X-linked recessive inheritance.
As with most X-linked disorders, males are more heavily affected than females. Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.
Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified.
X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males.
Symptoms(and signs) that are consistent with this disorder are the following:
It is characterized by developmental defects including cryptophthalmos (where the eyelids fail to separate in each eye), and malformations in the genitals (such as micropenis, cryptorchidism or clitoromegaly). Congenital malformations of the nose, ears, larynx and renal system, as well as mental retardation, manifest occasionally. Syndactyly (fused fingers or toes) has also been noted.