Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Sandhoff disease symptoms are clinically indeterminable from Tay–Sachs disease. The classic infantile form of the disease has the most severe symptoms and is incredibly hard to diagnose at this early age. The first signs of symptoms begin before 6 months of age and the parents’ notice when the child begins regressing in their development. If the children had the ability to sit up by themselves or crawl they will lose this ability. This is caused by a slow deterioration of the muscles in the child’s body from the buildup of GM2 gangliosides. Since the body is unable to create the enzymes it needs within the central nervous system it is unable to attach to these gangliosides to break them apart and make them non-toxic. With this buildup there are several symptoms that begin to appear such as muscle/motor weakness, sharp reaction to loud noises, blindness, deafness, inability to react to stimulants, respiratory problems and infections, mental retardation, seizures, cherry red spots in the retina, enlarged liver and spleen (hepatosplenomegaly), pneumonia, or bronchopneumonia.
The other two forms of Sandhoff disease have similar symptoms but to a lesser extent. Adult and juvenile forms of Sandhoff disease are more rare than the infantile form. In these cases victims suffer cognitive impairment (retardation) and a loss of muscle coordination that impairs and eventually destroys their ability to walk; the characteristic red spots in the retina also develop. The adult form of the disease, however, is sometimes milder, and may only lead to muscle weakness that impairs walking or the ability to get out of bed.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
The GM2 gangliosidoses are a group of three related genetic disorders that result from a deficiency of the enzyme beta-hexosaminidase. This enzyme catalyzes the biodegradation of fatty acid derivatives known as gangliosides. The diseases are better known by their individual names.
Beta-hexosaminidase is a vital hydrolytic enzyme, found in the lysosomes, that breaks down lipids. When beta-hexosaminidase is no longer functioning properly, the lipids accumulate in the nervous tissue of the brain and cause problems. Gangliosides are made and biodegraded rapidly in early life as the brain develops. Except in some rare, late-onset forms, the GM2 gangliosidoses are fatal.
All three disorders are rare in the general population. Tay-Sachs disease has become famous as a public health model because an enzyme assay test for TSD was discovered and developed in the late 1960s and early 1970s, providing one of the first "mass screening" tools in medical genetics. It became a research and public health model for understanding and preventing all autosomal genetic disorders.
Tay-Sachs disease, AB variant, and Sandhoff disease might easily have been defined together as a single disease, because the three disorders are associated with failure of the same metabolic pathway and have the same outcome. Classification and naming for many genetic disorders reflects history, because most diseases were first observed and classified based on biochemistry and pathophysiology before genetic diagnosis was available. However, the three GM2 gangliosidoses were discovered and named separately. Each represents a distinct molecular point of failure in a subunit that is required for activation of the enzyme.
Tay–Sachs disease is a rare autosomal recessive genetic disorder that causes a progressive deterioration of nerve cells and of mental and physical abilities that begins around six months of age and usually results in death by the age of four. It is the most common of the GM2 gangliosidoses. The disease occurs when harmful quantities of cell membrane gangliosides accumulate in the brain's nerve cells, eventually leading to the premature death of the cells.
Symptoms are related to the organs in which sphingomyelin accumulates. Enlargement of the liver and spleen (hepatosplenomegaly) may cause reduced appetite, abdominal distension, and pain. Enlargement of the spleen (splenomegaly) may also cause low levels of platelets in the blood (thrombocytopenia).
Accumulation of sphingomyelin in the central nervous system (including the cerebellum) results in unsteady gait (ataxia), slurring of speech (dysarthria), and difficulty in swallowing (dysphagia). Basal ganglia dysfunction causes abnormal posturing of the limbs, trunk, and face (dystonia). Upper brainstem disease results in impaired voluntary rapid eye movements (supranuclear gaze palsy). More widespread disease involving the cerebral cortex and subcortical structures causes gradual loss of intellectual abilities, causing dementia and seizures.
Bones also may be affected: symptoms may include enlarged bone marrow cavities, thinned cortical bone, or a distortion of the hip bone called coxa vara. Sleep-related disorders, such as sleep inversion, sleepiness during the day and wakefulness at night, may occur. Gelastic cataplexy, the sudden loss of muscle tone when the affected patient laughs, is also seen.
A lipid storage disorder (or lipidosis) can be any one of a group of inherited metabolic disorders in which harmful amounts of fats or lipids accumulate in some of the body’s cells and tissues. People with these disorders either do not produce enough of one of the enzymes needed to metabolize and break down lipids or they produce enzymes that do not work properly. Over time, this excessive storage of fats can cause permanent cellular and tissue damage, particularly in the brain, peripheral nervous system, liver, spleen and bone marrow.
Inside cells under normal conditions, lysosomes convert, or metabolize, lipids and proteins into smaller components to provide energy for the body.
Like many other genetic disorders that affect lipid metabolism, there are several forms of MLD, which are late infantile, juvenile, and adult.
- In the "late infantile form", which is the most common form of MLD (50–60%), affected children begin having difficulty walking after the first year of life, usually at 15–24 months. Symptoms include muscle wasting and weakness, muscle rigidity, developmental delays, progressive loss of vision leading to blindness, convulsions, impaired swallowing, paralysis, and dementia. Children may become comatose. Untreated, most children with this form of MLD die by age 5, often much sooner.
- Children with the "juvenile form" of MLD (onset between 3 and 10 years of age) usually begin with impaired school performance, mental deterioration, and dementia and then develop symptoms similar to the late infantile form but with slower progression. Age of death is variable, but normally within 10 to 15 years of symptom onset although some juveniles can live for several decades or longer after onset.
- The "adult form" commonly begins after age 16 often with an onset in the 4th or 5th decade of life and presents as a psychiatric disorder or progressive dementia. Adult-onset MLD usually progresses more slowly than the late infantile and juvenile forms, with a protracted course of a decade or more.
Palliative care can help with many of the symptoms and usually improves quality of life and longevity.
Carriers have low enzyme levels compared to their family population ("normal" levels vary from family to family) but even low enzyme levels are adequate to process the body's sulfatide.
Sandhoff disease, also known as Sandhoff–Jatzkewitz disease, variant 0 of GM2-Gangliosidosis or Hexosaminidase A and B deficiency, is a lysosomal genetic, lipid storage disorder caused by the inherited deficiency to create functional beta-hexosaminidases A and B. These catabolic enzymes are needed to degrade the neuronal membrane components, ganglioside GM2, its derivative GA2, the glycolipid globoside in visceral tissues, and some oligosaccharides. Accumulation of these metabolites leads to a progressive destruction of the central nervous system and eventually to death. The rare autosomal recessive neurodegenerative disorder is clinically almost indistinguishable from Tay–Sachs disease, another genetic disorder that disrupts beta-hexosaminidases A and S. There are three subsets of Sandhoff disease based on when first symptoms appear: classic infantile, juvenile and adult late onset.
Tay–Sachs disease is typically first noticed in infants around 6 months old displaying an abnormally strong response to sudden noises or other stimulus, known as the "startle response," because they are startled. There may also be listlessness or muscle stiffness (hypertonia). The disease is classified into several forms, which are differentiated based on the onset age of neurological symptoms.
- Infantile Tay–Sachs disease. Infants with Tay–Sachs disease appear to develop normally for the first six months after birth. Then, as neurons become distended with gangliosides, a relentless deterioration of mental and physical abilities begins. The child may become blind, deaf, unable to swallow, atrophied, and paralytic. Death usually occurs before the age of four.
- Juvenile Tay–Sachs disease. Juvenile Tay–Sachs disease is rarer than other forms of Tay–Sachs, and usually is initially seen in children between two and ten years old. People with Tay–Sachs disease develop cognitive and motor skill deterioration, dysarthria, dysphagia, ataxia, and spasticity. Death usually occurs between the age of five to fifteen years.
- Adult/Late-Onset Tay–Sachs disease. A rare form of this disease, known as Adult-Onset or Late-Onset Tay–Sachs disease, usually has its first symptoms during the 30s or 40s. In contrast to the other forms, late-onset Tay–Sachs disease is usually not fatal as the effects can stop progressing. It is frequently misdiagnosed. It is characterized by unsteadiness of gait and progressive neurological deterioration. Symptoms of late-onset Tay–Sachs – which typically begin to be seen in adolescence or early adulthood – include speech and swallowing difficulties, unsteadiness of gait, spasticity, cognitive decline, and psychiatric illness, particularly a schizophrenia-like psychosis. People with late-onset Tay–Sachs may become full-time wheelchair users in adulthood.
Until the 1970s and 1980s, when the disease's molecular genetics became known, the juvenile and adult forms of the disease were not always recognized as variants of Tay–Sachs disease. Post-infantile Tay–Sachs was often misdiagnosed as another neurological disorder, such as Friedreich's ataxia.
Niemann–Pick type C has a wide clinical spectrum. Affected individuals may have enlargement of the spleen (splenomegaly) and liver (hepatomegaly), or enlarged spleen or liver combined (hepatosplenomegaly), but this finding may be absent in later onset cases. Prolonged jaundice or elevated bilirubin can present at birth. In some cases, however, enlargement of the spleen or liver does not occur for months or years – or not at all. Enlargement of the spleen or liver frequently becomes less apparent with time, in contrast to the progression of other lysosomal storage diseases such as Niemann–Pick disease, Types A and B or Gaucher disease. Organ enlargement does not usually cause major complications.
Progressive neurological disease is the hallmark of Niemann–Pick type C disease, and is responsible for disability and premature death in all cases beyond early childhood. Classically, children with NPC may initially present with delays in reaching normal developmental milestones skills before manifesting cognitive decline (dementia).
Neurological signs and symptoms include cerebellar ataxia (unsteady walking with uncoordinated limb movements), dysarthria (slurred speech), dysphagia (difficulty in swallowing), tremor, epilepsy (both partial and generalized), vertical supranuclear palsy (upgaze palsy, downgaze palsy, saccadic palsy or paralysis), sleep inversion, gelastic cataplexy (sudden loss of muscle tone or drop attacks), dystonia (abnormal movements or postures caused by contraction of agonist and antagonist muscles across joints), most commonly begins with in turning of one foot when walking (action dystonia) and may spread to become generalized, spasticity (velocity dependent increase in muscle tone), hypotonia, ptosis (drooping of the upper eyelid), microcephaly (abnormally small head), psychosis, progressive dementia, progressive hearing loss, bipolar disorder, major and psychotic depression that can include hallucinations, delusions, mutism, or stupor.
In the terminal stages of Niemann–Pick type C disease, the patient is bedridden, with complete ophthalmoplegia, loss of volitional movement and severe dementia.
Other lipid storage disorders that are generally not classified as sphingolipidoses include fucosidosis, Schindler disease and Wolman disease.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
Signs and symptoms of GM2-gangliosidosis, AB variant are identical with those of infantile Tay-Sachs disease, except that enzyme assay testing shows normal levels of hexosaminidase A. Infantile Sandhoff disease has similar symptoms and prognosis, except that there is deficiency of both hexosaminidase A and hexosaminidase B. Infants with this disorder typically appear normal until the age of 3 to 6 months, when development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. As the disease progresses, infants develop seizures, vision and hearing loss, mental retardation, and paralysis.
An ophthalmological abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. This cherry-red spot is the same finding that Warren Tay first reported in 1881, when he identified a case of Tay-Sachs disease, and it has the same etiology.
The prognosis for AB variant is the same as for infantile Tay-Sachs disease. Children with AB variant die in infancy or early childhood.
Niemann–Pick disease ( ) is a group of inherited, severe metabolic disorders in which sphingomyelin accumulates in lysosomes in cells. The lysosomes normally transport material through and out of the cell.
This disease involves dysfunctional metabolism of sphingolipids, which are fats found in cell membranes, so it is a kind of sphingolipidosis. Sphingolipidoses, in turn, are included in the larger family of lysosomal storage diseases.
Methylmalonic acidemia (MMA), also called methylmalonic aciduria, is an autosomal recessive metabolic disorder. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.
Methylmalonic acidemia stems from several genotypes, all forms of the disorder usually diagnosed in the early neonatal period, presenting progressive encephalopathy, and secondary hyperammonemia. The disorder can result in death if undiagnosed or left untreated. It is estimated that this disorder has a frequency of 1 in 48,000 births, though the high mortality rate in diagnosed cases make exact determination difficult. Methylmalonic acidemias are found with an equal frequency across ethnic boundaries.
Depending on the affected gene(s), this disorder may present symptoms that range from mild to life-threatening.
- Stroke
- Progressive encephalopathy
- Seizure
- Kidney failure
- Vomiting
- Dehydration
- Failure to thrive and developmental delays
- Lethargy
- Repeated Yeast infections
- Acidosis
- Hepatomegaly
- Hypotonia
- Pancreatitis
- Respiratory distress
Niemann–Pick type C is a lysosomal storage disease associated with mutations in NPC1 and NPC2 genes. Niemann–Pick type C affects an estimated 1:150,000 people. Approximately 50% of cases present before 10 years of age, but manifestations may first be recognized as late as the sixth decade.
Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. There are two distinct genetic causes of the disease. Both are autosomal recessive and affect males and females equally.
Metachromatic leukodystrophy (MLD, also called arylsulfatase A deficiency) is a lysosomal storage disease which is commonly listed in the family of leukodystrophies as well as among the sphingolipidoses as it affects the metabolism of sphingolipids. Leukodystrophies affect the growth and/or development of myelin, the fatty covering which acts as an insulator around nerve fibers throughout the central and peripheral nervous systems. MLD involves cerebroside sulfate accumulation. Metachromatic leukodystrophy, like most enzyme deficiencies, has an autosomal recessive inheritance pattern.
GM2-gangliosidosis, AB variant is a rare, autosomal recessive metabolic disorder that causes progressive destruction of nerve cells in the brain and spinal cord. It has a similar pathology to Sandhoff disease and Tay-Sachs disease. The three diseases are classified together as the GM2 gangliosidoses, because each disease represents a distinct molecular point of failure in the activation of the same enzyme, beta-hexosaminidase. AB variant is caused by a failure in the gene that makes an enzyme cofactor for beta-hexosaminidase, called the GM2 activator.
Tay–Sachs disease is a genetic disorder that results in the destruction of nerve cells in the brain and spinal cord. The most common type, known as infantile Tay–Sachs disease, becomes apparent around three to six months of age with the baby losing the ability to turn over, sit, or crawl. This is then followed by seizures, hearing loss, and inability to move. Death usually occurs in early childhood. Less commonly the disease may occur in later childhood or adulthood. These forms are generally milder in nature.
Tay–Sachs disease is caused by a genetic mutation in the "HEXA" genes on chromosome 15. It is inherited from a person's parents in an autosomal recessive manner. The mutation results in problems with an enzyme called beta-hexosaminidase A which results in the buildup of the molecule GM2 ganglioside within cells, leading to toxicity. Diagnosis is by measuring the blood hexosaminidase A level or genetic testing. It is a type of sphingolipidoses.
The treatment of Tay–Sachs disease is supportive in nature. This may involve multiple specialities as well as psychosocial support for the family. The disease is rare in the general population. In Ashkenazi Jews, French Canadians of southeastern Quebec, and Cajuns of southern Louisiana, the condition is more common. Approximately 1 in 3,600 Ashkenazi Jews at birth are affected.
The disease is named after Waren Tay, who in 1881 first described a symptomatic red spot on the retina of the eye; and Bernard Sachs, who described in 1887 the cellular changes and noted an increased rate of disease in Ashkenazi Jews. Carriers of a single Tay–Sachs allele are typically normal. It has been hypothesized that being a carrier may confer protection from another condition such as tuberculosis, explaining the persistence of the allele in certain populations. Researchers are looking at gene therapy or enzyme replacement therapy as possible treatments.
Mucolipidosis (ML) is a group of inherited metabolic disorders that affect the body's ability to carry out the normal turnover of various materials within cells.
When originally named, the mucolipidoses derived their name from the similarity in presentation to both mucopolysaccharidoses and sphingolipidoses. A biochemical understanding of these conditions has changed how they are classified. Although four conditions (I, II, III, and IV) have been labeled as mucolipidoses, type I (sialidosis) is now classified as a glycoproteinosis, and type IV (Mucolipidosis type IV) is now classified as a gangliosidosis.
The classic characterization of the group of neurodegenerative, lysosomal storage disorders called the neuronal ceroid lipofuscinoses (NCLs) is through the progressive, permanent loss of motor and psychological ability with a severe intracellular accumulation of lipofuscins, with the United States and northern European populations having slightly higher frequency with an occurrence of 1 in 10,000. There are four classic diagnoses that have received the most attention from researchers and the medical field, differentiated from one another by age of symptomatic onset, duration, early-onset manifestations such as blindness or seizures, and the forms which lipofuscin accumulation takes.
In the early infantile variant of NCL (also called INCL or Santavuori-Haltia), probands appear normal at birth, but early visual loss leading to complete retinal blindness by the age of 2 years is the first indicator of the disease; by 3 years of age a vegetative state is reached and by 4 years isoelectric encephalograms confirm brain death. Late infantile variant usually manifests between 2 and 4 years of age with seizures and deterioration of vision. The maximum age before death for late infantile variant is 10–12 years. Juvenile NCL (JNCL, Batten Disease, or Spielmeyer-Vogt), with a prevalence of 1 in 100,000, usually arises between 4 and 10 years of age; the first symptoms include considerable vision loss due to retinal dystrophy, with seizures, psychological degeneration, and eventual death in the mid- to late-20s or 30s ensuing. Adult variant NCL (ANCL or Kuf’s Disease) is less understood and generally manifests milder symptoms; however, while symptoms typically appear around 30 years of age, death usually occurs ten years later.
All the mutations that have been associated with this disease have been linked to genes involved with the neural synapses metabolism – most commonly with the reuse of vesicle proteins.
Neuronal ceroid lipofuscinosis (NCL) is the general name for a family of at least eight genetically separate neurodegenerative disorders that result from excessive accumulation of lipopigments (lipofuscin) in the body's tissues. These lipopigments are made up of fats and proteins. Their name comes from the word stem "lipo-", which is a variation on "lipid" or "fat", and from the term "pigment", used because the substances take on a greenish-yellow color when viewed under an ultraviolet light microscope. These lipofuscin materials build up in neuronal cells and many organs, including the liver, spleen, myocardium, and kidneys.
The diagnosis of ML is based on clinical symptoms, a complete medical history, and certain laboratory tests.