Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Approximately 33% of people with influenza are asymptomatic.
Symptoms of influenza can start quite suddenly one to two days after infection. Usually the first symptoms are chills or a chilly sensation, but fever is also common early in the infection, with body temperatures ranging from 38 to 39 °C (approximately 100 to 103 °F). Many people are so ill that they are confined to bed for several days, with aches and pains throughout their bodies, which are worse in their backs and legs. Symptoms of influenza may include:
- Fever and extreme coldness (chills shivering, shaking (rigor))
- Cough
- Nasal congestion
- Vomiting
- Runny nose
- Sneezing
- Body aches, especially joints and throat
- Fatigue
- Headache
- Irritated, watering eyes
- Reddened eyes, skin (especially face), mouth, throat and nose
- Petechial rash
- In children, gastrointestinal symptoms such as diarrhea and abdominal pain, (may be severe in children with influenza B)
It can be difficult to distinguish between the common cold and influenza in the early stages of these infections. Influenza is a mixture of symptoms of common cold and pneumonia, body ache, headache, and fatigue. Diarrhea is not normally a symptom of influenza in adults, although it has been seen in some human cases of the H5N1 "bird flu" and can be a symptom in children. The symptoms most reliably seen in influenza are shown in the adjacent table.
Since antiviral drugs are effective in treating influenza if given early (see treatment section, below), it can be important to identify cases early. Of the symptoms listed above, the combinations of fever with cough, sore throat and/or nasal congestion can improve diagnostic accuracy. Two decision analysis studies suggest that "during local outbreaks" of influenza, the prevalence will be over 70%, and thus patients with any of these combinations of symptoms may be treated with neuraminidase inhibitors without testing. Even in the absence of a local outbreak, treatment may be justified in the elderly during the influenza season as long as the prevalence is over 15%.
The available laboratory tests for influenza continue to improve. The United States Centers for Disease Control and Prevention (CDC) maintains an up-to-date summary of available laboratory tests. According to the CDC, rapid diagnostic tests have a sensitivity of 50–75% and specificity of 90–95% when compared with viral culture. These tests may be especially useful during the influenza season (prevalence=25%) but in the absence of a local outbreak, or peri-influenza season (prevalence=10%).
Occasionally, influenza can cause severe illness including primary viral pneumonia or secondary bacterial pneumonia. The obvious symptom is trouble breathing. In addition, if a child (or presumably an adult) seems to be getting better and then relapses with a high fever, that is a danger sign since this relapse can be bacterial pneumonia.
Direct transmission of a swine flu virus from pigs to humans is occasionally possible (zoonotic swine flu). In all, 50 cases are known to have occurred since the first report in medical literature in 1958, which have resulted in a total of six deaths. Of these six people, one was pregnant, one had leukemia, one had Hodgkin's lymphoma and two were known to be previously healthy. Despite these apparently low numbers of infections, the true rate of infection may be higher, since most cases only cause a very mild disease, and will probably never be reported or diagnosed.
According to the Centers for Disease Control and Prevention (CDC), in humans the symptoms of the 2009 "swine flu" H1N1 virus are similar to those of influenza and of influenza-like illness in general. Symptoms include fever; cough, sore throat, watery eyes, body aches, shortness of breath, headache, weight loss, chills, sneezing, runny nose, coughing, dizziness, abdominal pain, lack of appetite and fatigue. The 2009 outbreak has shown an increased percentage of patients reporting diarrhea and vomiting as well. The 2009 H1N1 virus is not zoonotic swine flu, as it is not transmitted from pigs to humans, but from person to person through airborne droplets.
Because these symptoms are not specific to swine flu, a differential diagnosis of "probable" swine flu requires not only symptoms, but also a high likelihood of swine flu due to the person's recent and past medical history. For example, during the 2009 swine flu outbreak in the United States, the CDC advised physicians to "consider swine influenza infection in the differential diagnosis of patients with acute febrile respiratory illness who have either been in contact with persons with confirmed swine flu, or who were in one of the five U.S. states that have reported swine flu cases or in Mexico during the seven days preceding their illness onset." A diagnosis of "confirmed" swine flu requires laboratory testing of a respiratory sample (a simple nose and throat swab).
The most common cause of death is respiratory failure. Other causes of death are pneumonia (leading to sepsis), high fever (leading to neurological problems), dehydration (from excessive vomiting and diarrhea), electrolyte imbalance and kidney failure. Fatalities are more likely in young children and the elderly.
About 80% of infected dogs with H3N8 show symptoms, usually mild (the other 20% have subclinical infections), and the fatality rate for Greyhounds in early outbreaks was 5 to 8%, although the overall fatality rate in the general pet and shelter population is probably less than 1%. Symptoms of the mild form include a cough that lasts for 10 to 30 days and possibly a greenish nasal discharge. Dogs with the more severe form may have a high fever and pneumonia. Pneumonia in these dogs is not caused by the influenza virus, but by secondary bacterial infections. The fatality rate of dogs that develop pneumonia secondary to canine influenza can reach 50% if not given proper treatment. Necropsies in dogs that die from the disease have revealed severe hemorrhagic pneumonia and evidence of vasculitis.
In swine, an influenza infection produces fever, lethargy, sneezing, coughing, difficulty breathing and decreased appetite. In some cases the infection can cause abortion. Although mortality is usually low (around 1–4%), the virus can produce weight loss and poor growth, causing economic loss to farmers. Infected pigs can lose up to 12 pounds of body weight over a three- to four-week period. Swine have receptors to which both avian and mammalian influenza viruses are able to bind to, which leads to the virus being able to evolve and mutate into different forms. Influenza A is responsible for infecting swine, and was first identified in the summer of 1918. Pigs have often been seen as "mixing vessels", which help to change and evolve strains of disease that are then passed on to other mammals, such as humans.
Influenza, commonly known as "the flu", is an infectious disease caused by an influenza virus. Symptoms can be mild to severe. The most common symptoms include: a high fever, runny nose, sore throat, muscle pains, headache, coughing, and feeling tired. These symptoms typically begin two days after exposure to the virus and most last less than a week. The cough, however, may last for more than two weeks. In children, there may be nausea and vomiting, but these are not common in adults. Nausea and vomiting occur more commonly in the unrelated infection gastroenteritis, which is sometimes inaccurately referred to as "stomach flu" or "24-hour flu". Complications of influenza may include viral pneumonia, secondary bacterial pneumonia, sinus infections, and worsening of previous health problems such as asthma or heart failure.
Three types of influenza viruses affect people, called Type A, Type B, and Type C. Usually, the virus is spread through the air from coughs or sneezes. This is believed to occur mostly over relatively short distances. It can also be spread by touching surfaces contaminated by the virus and then touching the mouth or eyes. A person may be infectious to others both before and during the time they are showing symptoms. The infection may be confirmed by testing the throat, sputum, or nose for the virus. A number of rapid tests are available; however, people may still have the infection if the results are negative. A type of polymerase chain reaction that detects the virus's RNA is more accurate.
Frequent hand washing reduces the risk of viral spread. Wearing a surgical mask is also useful. Yearly vaccinations against influenza are recommended by the World Health Organization for those at high risk. The vaccine is usually effective against three or four types of influenza. It is usually well tolerated. A vaccine made for one year may not be useful in the following year, since the virus evolves rapidly. Antiviral drugs such as the neuraminidase inhibitor oseltamivir, among others, have been used to treat influenza. Their benefits in those who are otherwise healthy do not appear to be greater than their risks. No benefit has been found in those with other health problems.
Influenza spreads around the world in a yearly outbreak, resulting in about three to five million cases of severe illness and about 250,000 to 500,000 deaths. In the Northern and Southern parts of the world, outbreaks occur mainly in winter while in areas around the equator outbreaks may occur at any time of the year. Death occurs mostly in the young, the old and those with other health problems. Larger outbreaks known as pandemics are less frequent. In the 20th century, three influenza pandemics occurred: Spanish influenza in 1918 (~50 million deaths), Asian influenza in 1957 (two million deaths), and Hong Kong influenza in 1968 (one million deaths). The World Health Organization declared an outbreak of a new type of influenza A/H1N1 to be a pandemic in June 2009. Influenza may also affect other animals, including pigs, horses and birds.
The presence of an upper respiratory tract infection in a dog that has been vaccinated for the other major causes of kennel cough increases suspicion of infection with canine influenza, especially in areas where the disease has been documented. A serum sample from a dog suspected of having canine influenza can be submitted to a laboratory that performs PCR tests for this virus.
A cat that is infected with a high dose of the virus can show signs of fever, lethargy, and dyspnea. There have even been recorded cases where a cat has neurological symptoms such as circling or ataxia.
In a case in February 2004, a 2-year-old male cat was panting and convulsing on top of having a fever two days prior to death. This cat also had lesions that were identified as renal congestion, pulmonary congestion, edema, and pneumonia. Upon inspection, the cat also had cerebral congestion, conjunctivitis, and hemorrhaging in the serosae of the intestines.
However, a cat that is infected with a low dose of the virus may not necessarily show symptoms. Though they may be asymptomatic, they can still transfer small amounts of the virus.
Cats with Avian Influenza exhibit symptoms that can result in death. They are one of the few species that can get Avian Influenza. The specific virus that they get is H5N1, which is a subtype of Avian Influenza. In order to get the virus, cats need to be in contact with waterfowl, poultry, or uncooked poultry that are infected. Two of the main organs that the virus affects are the lungs and liver.
Avian influenza—known informally as avian flu or bird flu is a variety of influenza caused by viruses adapted to birds. The type with the greatest risk is highly pathogenic avian influenza (HPAI). Bird flu is similar to swine flu, dog flu, horse flu and human flu as an illness caused by strains of influenza viruses that have adapted to a specific host. Out of the three types of influenza viruses (A, B, and C), influenza A virus is a zoonotic infection with a natural reservoir almost entirely in birds. Avian influenza, for most purposes, refers to the influenza A virus.
Though influenza A is adapted to birds, it can also stably adapt and sustain person-to person transmission. Recent influenza research into the genes of the Spanish flu virus shows it to have genes adapted from both human and avian strains. Pigs can also be infected with human, avian, and swine influenza viruses, allow for mixtures of genes (reassortment) to create a new virus, which can cause an antigenic shift to a new influenza A virus subtype which most people have little to no immune protection.
Avian influenza strains are divided into two types based on their pathogenicity: high pathogenicity (HP) or low pathogenicity (LP). The most well-known HPAI strain, H5N1, appeared in China in 1996, and also has low pathogenic strains found in North America. Companion birds in captivity are unlikely to contract the virus and there has been no report of a companion bird with avian influenza since 2003. Pigeons do not contract or spread the virus.
Between early 2013 to early 2017, 916 lab-confirmed human cases of H7N9 were reported to the World Health Organization (WHO). On 9 January 2017, the National Health and Family Planning Commission of China reported to WHO 106 cases of H7N9 which occurred from late November through late December, including 35 deaths, 2 potential cases of human-to-human transmission, and 80 of these 106 persons stating that they have visited live poultry markets. The cases are reported from Jiangsu (52), Zhejiang (21), Anhui (14), Guangdong (14), Shanghai (2), Fujian (2) and Hunan (1). Similar sudden increases in the number of human cases of H7N9 have occurred in previous years during December and January.
Marburg virus disease (MVD; formerly Marburg hemorrhagic fever) is a severe illness of humans and non-human primates caused by either of the two marburgviruses, Marburg virus (MARV) and Ravn virus (RAVV). MVD is a viral hemorrhagic fever (VHF), and the clinical symptoms are indistinguishable from Ebola virus disease (EVD).
The most detailed study on the frequency, onset, and duration of MVD clinical signs and symptoms was performed during the 1998–2000 mixed MARV/RAVV disease outbreak. A maculopapular rash, petechiae, purpura, ecchymoses, and hematomas (especially around needle injection sites) are typical hemorrhagic manifestations. However, contrary to popular belief, hemorrhage does not lead to hypovolemia and is not the cause of death (total blood loss is minimal except during labor). Instead, death occurs due to multiple organ dysfunction syndrome (MODS) due to fluid redistribution, hypotension, disseminated intravascular coagulation, and focal tissue necroses.
Clinical phases of Marburg Hemorrhagic Fever's presentation are described below. Note that phases overlap due to variability between cases.
1. Incubation: 2–21 days, averaging 5–9 days.
2. Generalization Phase: Day 1 up to Day 5 from onset of clinical symptoms. MHF presents with a high fever (~40˚C) and a sudden, severe headache, with accompanying chills, fatigue, nausea, vomiting, diarrhea, pharyngitis, maculopapular rash, abdominal pain, conjunctivitis, & malaise.
3. Early Organ Phase: Day 5 up to Day 13. Symptoms include prostration, dyspnea, edema, conjunctival injection, viral exanthema, and CNS symptoms, including encephalitis, confusion, delirium, apathy, and aggression. Hemorrhagic symptoms typically occur late and herald the end of the early organ phase, leading either to eventual recovery or worsening & death. Symptoms include bloody stools, ecchymoses, blood leakage from venipuncture sites, mucosal & visceral hemorrhaging, and possibly hematemesis.
4. Late Organ Phase: Day 13 up to Day 21+. Symptoms bifurcate into two constellations for survivors & fatal cases. Survivors will enter a convalescence phase, experiencing myalgia, fibromyalgia, hepatitis, asthenia, ocular symptoms, & psychosis. Fatal cases continue to deteriorate, experiencing continued fever, obtundation, coma, convulsions, diffuse coagulopathy, metabolic disturbances, shock and death, with death typically occurring between Days 8 and 16.
Rotaviral enteritis is a mild to severe disease characterised by nausea, vomiting, watery diarrhoea and low-grade fever. Once a child is infected by the virus, there is an incubation period of about two days before symptoms appear. The period of illness is acute. Symptoms often start with vomiting followed by four to eight days of profuse diarrhoea. Dehydration is more common in rotavirus infection than in most of those caused by bacterial pathogens, and is the most common cause of death related to rotavirus infection.
Rotavirus A infections can occur throughout life: the first usually produces symptoms, but subsequent infections are typically mild or asymptomatic, as the immune system provides some protection. Consequently, symptomatic infection rates are highest in children under two years of age and decrease progressively towards 45 years of age. The most severe symptoms tend to occur in children six months to two years of age, the elderly, and those with immunodeficiency. Due to immunity acquired in childhood, most adults are not susceptible to rotavirus; gastroenteritis in adults usually has a cause other than rotavirus, but asymptomatic infections in adults may maintain the transmission of infection in the community. There is some to evidence to suggest blood group secretor status and the predominant bacteria in the gut can impact on the susceptibility to infection by rotavirus.
Influenza-like illness (ILI), also known as acute respiratory infection (ARI) and flu-like syndrome/symptoms, is a medical diagnosis of "possible" influenza or other illness causing a set of common symptoms.
Symptoms commonly include fever, shivering, chills, malaise, dry cough, loss of appetite, body aches, and nausea, typically in connection with a sudden onset of illness. In most cases, the symptoms are caused by cytokines released by immune system activation, and are thus relatively non-specific.
Common causes of ILI include the common cold and influenza, which tends to be less common but more severe than the common cold. Less-common causes include side effects of many drugs and manifestations of many other diseases.
LCMV causes callitrichid hepatitis in New World primates. The onset of the infection is nonspecific and may include fever, anorexia, dyspnea, weakness and lethargy. Jaundice is characteristic and petechial hemorrhages may develop. Prostration and death usually follow.
Necropsy lesions in primates with callitrichid hepatitis show signs of jaundice, hepatomegaly, splenomegaly, and subcutaneous and intramuscular hemorrhages. Pleural and pericardial effusion, sometimes sanguineous, has also been reported. On histology, multifocal necrosis with acidophilic bodies and mild inflammatory infiltrates are typically found in the liver.
Symptoms of viral pneumonia include fever, non-productive cough, runny nose, and systemic symptoms (e.g. myalgia, headache). Different viruses cause different symptoms.
Avian reoviruses belong to the genus "Orthoreovirus", and "Reoviridae" family. They are non-enveloped viruses that undergo replication in the cytoplasm of infected cells. It has icosahedral symmetry and contains a double-shelled arrangement of surface protein. Virus particles can range between 70–80 nm. Morphologically, the virus is a double stranded RNA virus that is composed of ten segments. The genome and proteins that are encoded by the genome can be separated into three different sizes ranging from small, medium, or large. Of the eleven proteins that are encoded for by the genome, two are nonstructural, while the remaining nine are structural.
Avian reoviruses can withstand a pH range of 3.0–9.0. Ambient temperatures are suitable for the survival of these viruses, which become inactive at 56 °C in less than an hour. Common areas where this virus can survive include galvanized metal, glass, rubber, feathers, and wood shavings. Avian reovirus can survive for up to ten days on these common areas in addition to up to ten weeks in water.
Cultivation and observation of the effects of avian reovirus is most often performed in chicken embryos. If infected into the yolk sac, the embryo will succumb to death accompanied by hemorrhaging of the embryos and cause the foci on the liver to appear yellowish-green. There are several primary chicken cell cultures/areas that are susceptible to avian reoviruses, which include the lungs, liver, kidney, and fibroblasts of the chick embryo. Of the following susceptible areas, liver cells from the chick embryo have been found to be the most sensitive for primary isolation from clinical material.
Typically, the CPE effect of avian reoviruses is the production of syncytia. CPE, or cytopathic effects are the visible changes in a host cell that takes place because of viral infection. Syncytia is a single cell or cytoplasmic mass containing several nuclei, formed by fusion of cells or by division of nuclei.
Infectious diseases causing ILI include malaria, acute HIV/AIDS infection, herpes, hepatitis C, Lyme disease, rabies, myocarditis, Q fever, dengue fever, poliomyelitis, pneumonia, measles, and many others.
Pharmaceutical drugs that may cause ILI include many biologics such as interferons and monoclonal antibodies. Chemotherapeutic agents also commonly cause flu-like symptoms. Other drugs associated with a flu-like syndrome include bisphosphonates, caspofungin, and levamisole. A flu-like syndrome can also be caused by an influenza vaccine or other vaccines, and by opioid withdrawal in addicts.
Pathogenesis occurs in the same manner in hamsters as in mice. Symptoms in hamsters are highly variable, and typically indicate that the pet has been infected and shedding the virus for several months. Early signs may include inactivity, loss of appetite, and a rough coat. As the disease progresses, the animal may experience weight loss, hunched posture, inflammation around the eyes, and eventually death. Alternatively, some infected hamsters may be asymptomatic.
Marburg virus is a hemorrhagic fever virus of the "Filoviridae" family of viruses and a member of the species "Marburg marburgvirus", genus "Marburgvirus". Marburg virus (MARV) causes Marburg virus disease in humans and nonhuman primates, a form of viral hemorrhagic fever. Considered to be extremely dangerous, the WHO rates it as a Risk Group 4 Pathogen (requiring biosafety level 4-equivalent containment). In the United States, the NIH/National Institute of Allergy and Infectious Diseases ranks it as a Category A Priority Pathogen and the Centers for Disease Control and Prevention lists it as a Category A Bioterrorism Agent. It is also listed as a biological agent for export control by the Australia Group.
The virus can be transmitted by exposure to one species of fruit bats or it can be transmitted between people via body fluids through unprotected copulation and broken skin. The disease can cause bleeding (haemorrhage), fever and other symptoms much like Ebola. Funeral rituals are a particular risk. Actual treatment of the virus after infection is not possible but early, professional treatment of symptoms like dehydration considerably increase survival chances.
In 2009, expanded clinical trials of an Ebola and Marburg vaccine began in Kampala, Uganda.
Croup is characterized by a "barking" cough, stridor, hoarseness, and difficulty breathing which usually worsens at night. The "barking" cough is often described as resembling the call of a seal or sea lion. The stridor is worsened by agitation or crying, and if it can be heard at rest, it may indicate critical narrowing of the airways. As croup worsens, stridor may decrease considerably.
Other symptoms include fever, coryza (symptoms typical of the common cold), and indrawing of the chest wall–known as Hoover's sign. Drooling or a very sick appearance indicate other medical conditions, such as epiglottitis.
There are several diseases that are caused by avian reovirus, which includes, avian arthritis/tenosynovitis, runting-stunting syndrome, and blue wing disease in chickens. Blue wing disease affects young broiler chickens and has an average mortality rate of 10%. It causes intramuscular and subcutaneous hemorrhages and atrophy of the spleen, bursa of Fabricius, and thymus. When young chickens are experimentally infected with avian reovirus, it is spread rapidly throughout all tissues. This virus is spread most frequently in the skin and muscles, which is also the most obvious site for lesions. Avian arthritis causes significant lameness in joints, specifically the hock joints. In the most severe cases, viral arthritis has caused the tendon to rupture. Chickens that have contracted runting-stunting syndrome cause a number of individuals in a flock to appear noticeably small due to its delayed growth. Diseased chicks are typically pale, dirty, wet, and may have a distending abdomen. Some individuals may display “helicopter-like” feathers in their wings and other feather abnormalities. The virus has also been shown to cause osteoporosis.
An oncovirus is a virus that can cause cancer. This term originated from studies of acutely transforming retroviruses in the 1950–60s, often called oncornaviruses to denote their RNA virus origin.
It now refers to any virus with a DNA or RNA genome causing cancer and is synonymous with "tumor virus" or "cancer virus". The vast majority of human and animal viruses do not cause cancer, probably because of longstanding co-evolution between the virus and its host. Oncoviruses have been important not only in epidemiology, but also in investigations of cell cycle control mechanisms such as the Retinoblastoma protein.
The World Health Organization's International Agency for Research on Cancer estimated that in 2002, infection caused 17.8% of human cancers, with 11.9% caused by one of seven viruses. These cancers might be easily prevented through vaccination (e.g., papillomavirus vaccines), diagnosed with simple blood tests, and treated with less-toxic antiviral compounds.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
Croup, also known as laryngotracheobronchitis, is a type of respiratory infection that is usually caused by a virus. The infection leads to swelling inside the trachea, which interferes with normal breathing and produces the classic symptoms of "barking" cough, stridor, and a hoarse voice. Fever and runny nose may also be present. These symptoms may be mild, moderate, or severe. Often it starts or is worse at night. It normally lasts one to two days.
Croup can be caused by a number of viruses including parainfluenza and influenza virus. Rarely is it due to a bacterial infection. Croup is typically diagnosed based on signs and symptoms after potentially more severe causes, such as epiglottitis or an airway foreign body, have been ruled out. Further investigations—such as blood tests, X-rays, and cultures—are usually not needed.
Many cases of croup are preventable by immunization for influenza and diphtheria. Croup is usually treated with a single dose of steroids by mouth. In more severe cases inhaled epinephrine may also be used. Hospitalization is required in one to five percent of cases.
Croup is a relatively common condition that affects about 15% of children at some point. It most commonly occurs between 6 months and 5 years of age but may rarely be seen in children as old as fifteen. It is slightly more common in males than females. It occurs most often in autumn. Before vaccination, croup was frequently caused by diphtheria and was often fatal. This cause is now very rare in the Western world due to the success of the diphtheria vaccine.
Viral pneumonia is a pneumonia caused by a virus.
Viruses are one of the two major causes of pneumonia, the other being bacteria; less common causes are fungi and parasites. Viruses are the most common cause of pneumonia in children, while in adults bacteria are a more common cause.